

Distribution of Volatile Composition in 'Marion' (*Rubus* Species *Hyb*) Blackberry Pedigree

Xiaofen Du, † Chad Finn, § and Michael C. Qian *,†

[†]Department of Food Science and Technology, Oregon State University, Corvallis, Oregon 97331 and §Horticultural Crops Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon 97330

The distribution of volatile constituents in ancestral genotypes of 'Marion' blackberry's pedigree was investigated over two growing seasons. Each genotype in the pedigree had a specific volatile composition. Red raspberry was dominated by norisoprenoids, lactones, and acids. 'Logan' and 'Olallie' also had a norisoprenoid dominance but at much lower concentrations. The concentration of norisoprenoids in other blackberry genotypes was significantly lower. Terpenes and furanones were predominant in wild 'Himalaya' blackberry, whereas terpenes were the major volatiles in 'Santiam'. 'Marion', a selection from 'Chehalem' and 'Olallie', contained almost all of the volatile compounds in its pedigree at moderate amount. The chiral isomeric ratios of 11 pairs of compounds were also studied. Strong chiral isomeric preference was observed for most of the chiral compounds, and each cultivar had its unique chiral isomeric distribution. An inherent pattern was observed for some volatile compounds in the 'Marion' pedigree. Raspberry and 'Logan' had a very high concentration of β -ionone, but was reduced by half in 'Olallie' and by another half in 'Marion' as the crossing proceeded. A high content of linalool in 'Olallie' and a low content in 'Chehalem' resulted in a moderate content of linalool in their progeny 'Marion'. However, the concentration of furaneol in 'Marion' was higher than in its parents. A high content of (S)-linalool in 'Olallie' and a racemic content of (S)-,(R)-linalool in 'Chehalem' resulted in a preference for the (S)-form in 'Marion'.

KEYWORDS: Blackberry volatile; stir bar sorptive extraction (SBSE); microvial insert thermal desorption; Marion pedigree

INTRODUCTION

'Marion' blackberry (*Rubus* sp. L.) was released in 1956 by the cooperative breeding program of the U.S. Department of Agriculture—Agricultural Research Service and the Oregon Agricultural Experiment Station. The pedigree of 'Marion' is quite complicated (**Figure 1**) (*I*). 'Chehalem' and 'Olallie' are the parents of 'Marion'. 'Chehalem' partly originates from wild 'Himalaya'. 'Olallie' has a red raspberry parent in its ancestry. The entire ancestry of 'Marion' is incomplete, and it may never be determined with complete accuracy.

'Marion' has an outstanding aroma and flavor quality; however, its canes are thorny. Consumer preference for 'Marion' flavor has stimulated the breeding program to develop thornless cultivars with 'Marion' type flavor. Blackberry plant breeding is a long process where thousands of seedlings need to be evaluated in the process of developing each new cultivar. Part of the reason the process is slow is that in each stage of evaluation (seedling, selection, advanced selection) it takes 2-3 years for the plants to be mature enough have fruit to evaluate. If the flavor makeups of the parents are known, and the flavor traits are heritable, it could be possible to "formulate" the parents and increase the

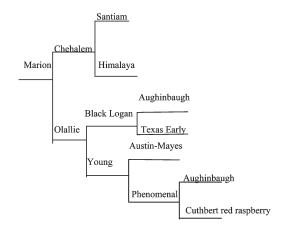


Figure 1. 'Marion' blackberry pedigree.

possibility of breeding in the desirable flavor attribute to new selections.

Breeding in flavor attributes is very complicated, and very few studies have reported the volatile heritability in berry fruits. From the volatile analysis of hybrids, it has been suggested that some compounds such as 3-methyl-2-butenoic and 3-methyl-3-butenoic acids, linalool oxides, α -terpineol, mesifurane, furaneol, alcohols, and esters are inherited in raspberry, strawberry,

^{*}Author to whom correspondence should be addressed [telephone (541) 737-9114; fax (541) 737-1877; e-mail michael.qian@oregonstate.edul.

and highbush blueberry (2-4). However, it is difficult to make general conclusions of the patterns of inheritance of the volatile compounds in fruits.

More extensive studies on the inheritance of volatile compounds in fruits use a large number of seedlings or progenitors to make a statistical analysis. Most information for aroma inheritability is from studies on strawberry (5-7). Aroma analysis shows different models of inheritance of different compounds, which is not surprising considering that the multiplicity of volatile compounds is derived from different biochemical pathways. For instance, methyl anthranilate, a major compound in strawberry, was detectable in only one-fourth of the offspring of a cross between a parent that had fruit with detectable methyl anthranilate with one that had no detectable methyl anthranilate (5). This low degree of inheritance suggests that this important compound can be easily lost in the breeding process. Transgressive segregation, where the offspring has levels of compounds higher or lower than either parent is common. For instance in a cross of a strawberry parent whose fruit had no detectable methyl butanoate with one that had low levels, the offspring had fruit that ranged from no detectable methyl butanoate to fruit with levels $5\times$ the level of the parent with detectable levels (5).

Very little is known of volatile heritability in blackberries, and the volatile composition in each genotype in the 'Marion' pedigree has not been fully studied. The objective of this study was to investigate the distribution of volatile constituents and enantiomeric ratio of some chiral compounds throughout the 'Marion' pedigree.

MATERIALS AND METHODS

Chemicals. All of the chemical standards used in this study are listed in Tables 1 and 2. Methanol (HPLC grade) was from EM Science (Gibbstown, NJ), and dichloromethane (HPLC grade) was from Burdick & Jackson (Muskegon, MI). Standard stock solutions of 7-methyl-3-methylene-1,6-octadiene (myrcene) and 6-heptyloxan-2-one (δ -dodecalactone) were prepared in dichloromethane individually at a concentration of 10 mg/mL, and all other stock solutions were prepared in methanol individually. Two sets of internal standards were prepared. Internal standard A was composed of 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane (eucalyptol), 4-methyl-2-propan-2-ylphenol (isothymol), 4-heptanolide-4,5-dihydro-5-propyl-2(3H)-furanone (γ -heptalactone), and 1-(2-hydroxy-5-methylphenyl)ethanone with concentrations of 3.4, 8.3, 7.6, and 3.5 mg/L; internal standard B was 1-(2-hydroxy-5-methylphenyl)ethanone with a concentration of 70 mg/L.

Anhydrous sodium sulfate (99.9%, ACS certified) was supplied by Mallinckrodt Baker (Phillipsburg, NJ). Fructose, glucose, and citric acid were from Lancaster (Ward Hill, MA); sucrose and malic acid were from Spectrum (Gardena, CA). Synthetic juice contained 3.0% fructose, 3.1% glucose, 0.2% sucrose, 0.8% citric acid, and 0.9% malic acid. Citrate buffer solution (0.2 M, pH 3.1) was freshly prepared.

Berry Samples. Fully ripe berry samples including 'Marion', 'Chehalem', 'Santiam', 'Himalaya', 'Olallie', 'Logan', and 'Meeker' red raspberry were hand-harvested from plants growing in research plots at Oregon State University Lewis-Brown Farm in Corvallis, OR, between June and July of the 2007 and 2008 growing seasons. The berries were individually quick frozen (IQF) and stored at −18 °C until analysis. During analysis, 100 g of IQF berry fruit was thawed in a refrigerator (1 °C). Equal weights of distilled water and 1% calcium chloride (final concentration) were added, and the sample was then blended in a glass jar (Waring Products Div., Dynamics Corp. of America, New Hartford, CT) in high-speed pulse mode for 20 s. The puree was centrifuged for 20 min at 5000 rpm. The supernatant was filtered through a Waterman no. 1 filter paper (particle retention $> 11 \,\mu\text{m}$), followed by a VWR 413 filter paper (particle retention $5 \mu m$). The filtered clear juice was used for analysis.

Brix and Titratable Acidity. Brix was measured at room temperature using a PAL-1 pocket refractometer (Atago USA, Inc., Bellevue, WA). Titratable acidity was measured by mixing 7 mL of juice sample with 50 mL of boiled water and titrating with 0.1 N NaOH to an end point of pH 8.1 and is reported as percentage of citric acid.

Stir Bar Sorptive Extraction (SBSE)-GC-MS Analysis. Ten milliliters of berry juice was added to a 20 mL vial, to which 3 g of sodium chloride and 20 µL of internal standard A solution were added. A stir bar (Twister) coated with poly(dimethylsiloxane) (PDMS) phase (1 cm length, 0.5 mm thickness, Gerstel Inc., Baltimore, MD) was used to extract volatile compounds. The sample was extracted with the Twister bar for 2 h at a speed of 1000 rpm. After extraction, the Twister bar was rinsed with distilled water, dried with a tissue paper, and placed into a sample holder for GC-MS analysis.

GC-MS analysis was performed using an Agilent 6890 gas chromatograph with a 5973 mass selective detector (Agilent, Santa Clara, CA). Samples were loaded into the TDU by a multipurpose autosampler (Gerstel Inc.). A cooled injection system (CIS4, Gerstel Inc.) was used in the GC-MS system. A glass liner packed with 1 cm of Tenax sorbent (TA, 60/80, Supelco, Bellefonte, PA) was used in the CIS4 injector.

The TDU has an initial temperature of 25 °C. After the sample was loaded, the TDU was heated at a rate of 300 °C/min to a final temperature of 250 °C with a 1 min hold. TDU injection was in splitless mode during thermal desorption, whereas the CIS4 was in a solvent vent mode with a venting flow of 60 mL/min for 4.7 min, at a venting pressure of 22.8 psi. After the solvent vent, the CIS4 was switched to splitless mode for 3.0 min and then changed to split mode with a venting flow of 50 mL/min. The initial temperature of CIS4 was kept at -80 °C for 0.2 min and then ramped at a rate of 10 °C/s to a final temperature of 250 °C with a 10 min hold.

Compound separation was achieved with a DB-WAX column (30 m \times 0.25 mm i.d., 0.25 μ m film thickness, Phenomenex, Torrance, CA). The oven temperature was programmed at 40 °C for a 2 min hold and then increased to 230 °C at a rate of 4 °C/min with a 6 min hold at the final temperature. A constant helium column flow of 2.5 mL/min was used. A column splitter was used at the end of the column, 1 mL/min column flow was introduced to the MS, and the other 1.5 mL/min column flow was vented out. The MS transfer line and ion source temperatures were 280 and 230 °C, respectively. Electron ionization mass spectrometric data from m/z35 to 350 were collected using a scan rate of 5.27/s, with an ionization voltage of 70 eV.

Standard calibration curves were built up for quantitative analysis. Individual stock solution was diluted in synthetic juice to make the first level mixed standard solution, which was then diluted at a 1:9 (v/v) ratio with synthetic juice to obtain the concentration range (Table 1). Twenty microliters of internal standard was added to the diluted solution. Volatiles were then extracted using a stir bar, as done for the sample. Standard calibration curves were obtained through Chemstation software using selected mass ions (Tables 1 and 2) and were used to calculate the concentrations of volatile compounds in the samples. Triplicate analysis was performed for each sample.

Solid Phase Extraction (SPE)—Direct Microvial Insert Thermal **Desorption GC-MS for Polar Compounds.** Polar volatile compounds including butanoic acid, 2-methylbutanoic acid, phenylmethanol, 2-phenylethanol, and Furaneol (Table 2) were determined using a SPE-direct microvial insert thermal desorption technique described previously, with some modification (8). Ten milliliters of berry juice was passed through a preconditioned Lichrolut-EN cartridge (200 mg, 3 mL, from Merck, Darmstadt, Germany, preconditioned with 5 mL of methanol followed by 10 mL of distilled water). After the sample was loaded, the SPE cartridge was washed with 20 mL of distilled water and then gently dried with air. The retained volatile compounds were eluted with 1 mL of methanol. Twenty microliters of internal standard B was added, and the eluent was dried with anhydrous sodium sulfate. Ten microliters of the extract was loaded into a 200 µL glass insert and placed into the sample holder of the TDU for GC-MS analysis. The TDU and GC-MS conditions were the same as described previously, except that the TDU was heated at a rate of 100 °C/min to the final temperature and the initial CIS4 temperature was kept at 25 °C.

Individual stock solution of butanoic acid, 2-methylbutanoic acid, phenylmethanol, 2-phenylethanol, and Furaneol was diluted in methanol to make the first level mixed standard solution and then diluted with methanol to a serial concentration (Table 2). Twenty microliters of internal standard was added to the diluted solution. Ten microliters of solution was used to build the calibration curves.

Table 1. Chemical Standards and MS Fragments Used for Quantitative Analysis by SBSE Method

chemical	source, purity	quantify ions	qualify ions	slope ^a	intercept	R ²	range ^b (μg/L)
1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane ^c (eucalyptol)	Aldrich, 99%	81	108, 154				
ethyl butanoate	Aldrich, ≥98%	71	60, 88	0.45	+0.02	0.995	0.5-200
hexanal	Aldrich, ≥97%	56	72, 82	0.17	+0.01	0.967	0.5-600
2-methyl-5-(1-methylethyl)-1,3-cyclohexadiene (α -phellandrene)	Aldrich	93	77, 136	0.29	-0.15	0.985	0.5 - 170
7-methyl-3-methylene-1,6-octadiene (myrcene)	K&K Lab, NY	93	69, 41	0.30	+0.21	0.957	0.5 - 250
4-methyl-1-(1-methylethyl)-1,3-cyclohexadiene (α -terpinene)	TCI American, 90%	121	93, 136	0.38	-0.11	0.988	0.5-210
1-methyl-4-prop-1-en-2-yl-cyclohexene (limonene)	Aldrich, ≥97%	68	93, 67	0.12	+0.28	0.976	1-390
heptan-2-one	Sigma-Aldrich, 99%	43	58, 71	0.54	+0.07	0.971	0.5 - 400
methyl hexanoate	Aldrich, ≥99%	74	87, 99	1.81	+0.03	0.994	0.5 - 180
(E)-hex-2-enal	Aldrich, ≥95%	69	55, 41	0.16	+0.07	0.960	0.5 - 720
ethyl hexanoate	Aldrich, ≥98%	88	99, 101	1.59	-0.08	0.996	0.5 - 240
hexyl acetate	Aldrich, ≥98%	56	61, 69	0.95	+0.10	0.993	0.5-200
1-methyl-4-propan-2-ylidenecyclohexene (α -terpinolene)	Aldrich, ≥90%	121	93, 136	0.33	+0.12	0.966	0.5 - 220
(Z)-hex-3-enyl acetate	Aldrich, ≥98%	67	43, 82	1.68	+0.04	0.991	0.5 - 170
heptan-2-ol	Aldrich, ≥97%	45	55, 83	0.54	+0.55	0.988	3-2100
(E)-hex-2-enyl acetate	Bedoukian Research	67	100, 82	0.74	+0.17	0.991	0.5 - 170
hexan-1-ol	Sigma-Aldrich, ≥99%	56	55, 69	0.14	+0.09	0.978	3-1100
(Z)-hex-3-en-1-ol	Bedoukian Research	67	69, 82	0.04	+0.24	0.977	3-900
(<i>E</i>)-hex-2-en-1-ol	Compagnie Parento, Inc.	57	67, 82	0.05	+0.13	0.971	1-1500
6-methyl-2-(oxiran-2-yl)hept-5-en-2-ol (linalool oxide)	Fluka, ≥97%	59	94, 111	0.09	+0.29	0.988	1-2000
oct-1-en-3-ol	Aldrich, ≥98%	57	85, 72	1.10	+0.15	0.987	0.5 - 350
heptan-1-ol	Eastman Chemical	70	56, 55	0.55	+0.02	0.988	0.5 - 130
6-methylhept-5-en-2-ol	Aldrich, 99%	95	110, 128	0.69	+0.28	0.997	0.5 - 150
(2E,4E)-hepta-2,4-dienal	Fluka, ≥97%	81	110, 53	1.11	+0.51	0.970	0.5 - 250
2,6,6,10-tetramethyl-1-oxaspiro[4.5]dec-9-ene (theaspirane)	Aldrich, ≥85%	138	82, 96	2.25	-0.21	0.994	0.5 - 400
^c 1-(2-hydroxy-5-methylphenyl)ethanone	Aldrich, 98%	135	150, 107				
3,7-dimethylocta-1,6-dien-3-ol (linalool)	Aldrich, ≥97%	71	93, 121	0.23	+0.17	0.997	5-4140
octan-1-ol	Eastman Chemical	56	84, 70	0.22	+0.65	0.998	2-780
undecan-2-one	Aldrich, 99%	58	43, 59	0.53	-0.12	0.998	0.5-240
4-methyl-1-propan-2-ylcyclohex-3-en-1-ol (4-terpineol)	TCI Japan	71	154, 111	0.50	-0.07	1.000	0.5 - 440
(1 <i>R</i> ,5 <i>R</i>)-2,7,7-trimethylbicyclo[3.1.1]hept-2-en-4-one (verbenone)	Aldrich, 94%	107	135, 150	0.08	+0.05	0.995	0.5-200
(2S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (borneol)	Aldrich, 97%	95	110, 139	0.94	+0.03	0.995	0.5-100
2-(4-methyl-1-cyclohex-3-enyl) propan-2-ol (α -terpineol)	K&K Lab, NY	59	93, 136	0.15	+0.18	0.999	2-1300
2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-one (carvone)	Aldrich, ≥97%	82	93, 108	0.55	+0.01	1.000	0.5-280
methyl 2-hydroxybenzoate (methyl salicylate)	Lancaster, 98%	120	92, 152	0.75	-0.13	1.000	1-650
3,7-dimethyloct-6-en-1-ol (citronellol)	Aldrich	69	82, 95	0.22	-0.05	0.999	0.5-230
3,7-dimethylocta-2,6-dien-1-ol (nerol)	Sigma, ∼98%	69	121, 93	0.38	+0.23	0.971	0.5-200
(E)-1-(2,6,6-trimethyl-1-cyclohexa-1,3-dienyl)but-2-en-1-one	Firmenich	121	105, 190	1.16	-0.42	0.997	0.5 - 250
$(trans-\beta-damascenone)$							
2-(7,7-dimethyl-4-bicyclo[3.1.1]hept-3-enyl)ethanol (nopol)	Aldrich, 98%	105	79, 91	0.97	-0.42	0.994	1-500
$(3E)$ -4- $(2,6,6$ -trimethylcyclohex-2-en-1-yl)but-3-en-2-one $(\alpha$ -ionone)	Fluka, 75-90%	121	93, 136	0.93	-0.22	1.000	1-850
hexanoic acid	Aldrich, ≥99.5%	60	87, 73	0.01	+0.18	0.997	10-10500
3, 7-dimethylocta-2,6-dien-1-ol (geraniol)	Aldrich, 98%	69	123, 93	0.50	+0.27	0.999	1-1020
$(3E)$ -4- $(2,6,6$ -trimethylcyclohex-1-en-1-yl)but-3-en-2-one $(\beta$ -ionone)	Aldrich, ≥97%	177	135, 192	1.78	-0.19	0.998	1-1050
4-phenylbutan-2-ol	Lancaster, 98%	117	91, 132	0.12	+0.33	0.996	1-1120
(4-prop-1-en-2-yl-1-cyclohexenyl)methanol (perilla alcohol)	Aldrich, 96%	79	121, 93	0.10	+0.04	0.999	1-460
octanoic acid	Aldrich	60	73, 101	0.08	+0.15	0.989	5-3800
5-propyloxolan-2-one c (γ -heptalactone)	Aldrich, ≥98%	85	56, 110				
4-methoxy-2,5-dimethylfuran-3-one (mesifurane)	Aldrich, ≥97%	142	55, 71	0.18	-0.03	0.998	2-240
5-butyloxolan-2-one (γ -octalactone)	Pfaltz & Bauer Inc.	85	100, 57	4.61	-0.30	0.999	0.5 - 190
6-propyloxan-2-one (δ -octalactone)	Lancaster, 98%	99	71, 55	0.54	+0.03	0.999	0.5-220
4-methyl-2-propan-2-ylphenol ^c (isothymol)	TCI American, 99%	135	91, 150				
(4-propan-2-ylphenyl)methanol (cumic alcohol)	Aldrich, 97%	135	150, 105	0.12	+0.07	0.995	1-500
5-hexyloxolan-2-one (γ -decalactone)	Aldrich, ≥98%	85	128, 55	0.68	+0.19	0.995	0.5-310
4-allyl-2-methoxyphenol (eugenol)	Aldrich, ≥98%	164	149, 131	0.21	+0.06	0.997	1-470
6-pentyloxan-2-one (δ -decalactone)	Aldrich, ≥98%	99	71, 114	0.16	+0.41	0.981	2-2560
3-phenylprop-2-en-1-ol (cinnamyl alcohol)	TCI American, 97%	92	134, 115	0.008	+0.02	0.976	2-1230
2-methoxy-4-(prop-1-en-1-yl)phenol (isoeugenol)	Aldrich, 98%	164	149, 103	0.21	-0.06	0.996	0.5-330
6-heptyloxan-2-one (δ -dodecalactone)	TCI Japan	99	71, 114	0.48	-0.005	1.000	0.5-210

 $[^]a$ Values for the slope in the equation $R_{\text{TC}}/R_{\text{IS}}$ = slope($C_{\text{TC}}/C_{\text{IS}}$) + intercept, where R_{TC} is the MS response of the target compound, R_{IS} is the MS response of the internal standard, C_{TC} is the concentration of the target compound, and C_{IS} is the concentration of the internal standard. b Actual concentration range for standard calibration curve. c Internal standard.

Chiral Analysis. Volatile compounds in berry samples were isolated using the same procedures as described previously (both SBSE and SPE methods); however, internal standards were not added. Separation was achieved using a Cyclosil B column (30 m \times 0.25 mm i.d., 0.25 μ m film thickness, Agilent). The oven temperature was programmed at 40 °C for a

2 min hold and then increased to 230 °C at a rate of 5 °C/min, with a 5 min hold at the final temperature. Authentic standards (*R*)-limonene (Sigma-Aldrich, Milwaukee, WI), (*S*)-limonene (Aldrich, Milwaukee, WI), (*R*)-linalool (Fluka, Buchs, Switzerland), (*R*)-2-heptanol (Aldrich), and (*R*)-terpinen-4-ol (Aldrich) were used for identification. All other isomeric

Table 2. Chemical Standards and MS Fragments Used for Quantitative Analysis by SPE Method

chemical	source, purity	quantify ions	qualify ions	slope ^a	intercept	R^2	range ^b (μg/L)
1-(2-hydroxy-5-methylphenyl)ethanone ^c	Aldrich, 98%	135	150, 107				
butanoic acid	Aldrich, ≥99%	60	73, 55	0.39	-0.19	0.995	70-93000
2-methylbutanoic acid	Aldrich	60	45, 87	0.50	-0.20	0.997	70-95160
phenylmethanol	Sigma-Aldrich, 99.8%	108	107, 77	0.51	-0.09	0.992	40-49430
2-phenylethanol	Sigma-Aldrich, ≥99%	91	92, 122	1.20	-0.006	0.993	40-47530
4-hydroxy-2,5-dimethylfuran-3-one (Furaneol)	Fluka, ≥99%	128	57, 85	1.79	-0.30	0.975	230-105000

^a Values for the slope in the equation R_{TC}/R_{IS} = slope(C_{TC}/C_{IS}) + intercept, where R_{TC} is the MS response of the target compound, R_{IS} is the MS response of the internal standard, C_{TC} is the concentration of the target compound, and C_{IS} is the concentration of the internal standard. ^b Actual concentration range for standard calibration curve. ^c Internal standard.

Table 3. °Brix, Titratable Acidity (TA), and Soluble Solids Content to TA Ratio for the Genotypes Representing 'Marion' Blackberry's Pedigree

		2007			2008	
	°Brix	TA	ratio	°Brix	TA	ratio
Marion	14.0	1.7	8.2	11.4	1.2	9.5
Chehalem	15.6	3.2	4.8	14.6	3.1	4.8
Santiam	15.6	1.7	9.2	17.0	1.4	11.9
Himalaya	14.0	1.0	13.6	14.4	1.0	14.8
Olallie	13.8	1.8	7.5	16.8	1.7	9.7
Logan	20.2	3.1	6.4	14.2	2.2	6.4
Meeker, red raspberry	13.8	1.3	10.7	16.2	1.8	8.9

compounds were tentatively identified on the basis of literature reports using a similar column and compounds identified in fruits. The isomeric ratio was determined using the relative total mass ion abundance of the compound.

Statistical Analysis. The S-PLUS version 7.0 software (Insightful Corp., Seattle, WA) was used to test the statistical variances of volatile constituents from two growing seasons. Triplicate analysis was performed for each sample from each growing season, and a *t* test was conducted to test the growing season variance of each volatile compound; ANOVA (analysis of variance) was applied for the test of the variance of each volatile compound among different cultivars.

RESULTS AND DISCUSSION

°Brix and Titratable Acidity. In this study, seven cultivars that reflected genotypes in 'Marion's pedigree in two growing seasons were collected: 'Marion', 'Chehalem', 'Santiam', 'Himalaya', 'Olallie' blackberry; 'Logan', a raspberry—blackberry hybrid; and 'Meeker' red raspberry. 'Brix, titratable acidity, and the ratio of soluble solids content to titratable acidity are presented in **Table 3**. Although seasonal variation was observed for some cultivars, the soluble solids content to titratable acidity ratio was relatively consistent for each individual cultivar harvested in two years, suggesting the fruit maturity was similar in both years because the ratio of soluble solids content to titratable acidity is a good indicator of fruit maturity (9).

Volatile Distribution in 'Marion' Pedigree. The volatile compounds in 'Marion's pedigree were very diverse, and it was challenging to analyze all volatile compounds using a single method. In this study, SBSE-GC-MS and SPE-microvial insert thermal desorption GC-MS were used to analyze a wide range of compounds. Approximately 80 compounds in 'Marion's pedigree (Table 4) were quantified.

Overall, the most abundant volatile compounds in the genotypes were lipid derivatives, followed by terpenes. A large amount of norisoprenoids and shikimic acid derivatives also existed. Two furanone compounds including mesifurane and Furaneol were quantified. However, the compounds in each category did not distribute evenly among the cultivars. Among the compounds analyzed, about half of them presented significant seasonal variations (p < 0.01). Compounds from shikimic acid derivatives

and lipid derivatives had higher seasonal variations than terpenes, norisoprenoids, and furanones.

Volatile patterns varied greatly in the genotypes in 'Marion's pedigree. The volatile pattern in raspberry was completely different from that of the blackberries. 'Meeker' predominated by norisoprenoids, lactones, and acids and contained only small amounts of other volatiles, which was in agreement with the literature (10,11). 'Logan' and 'Olallie', which have red raspberry parents in their ancestry, had a dominance of norisoprenoids, as did 'Meeker' red raspberry, but at much lower concentration. The concentration of norisoprenoids in blackberry genotypes was significantly lower.

Wild 'Himalaya' blackberry was dominated by terpenes and furanones, but had only trace levels of norisoprenoids and esters. The predominant volatiles in 'Santiam' were terpenes. 'Chehalem', a selection from the progenies of 'Santiam' × 'Himalaya', had characteristics from both of its parents. 'Chehalem' had a dominant volatile composition for terpenes, but the concentration was much lower than in 'Santiam'. 'Chehalem' contained a small amount of alcohols, carbonyls, and furanones, similar to its parent 'Santiam'; it also had trace levels of norisoprenoids and esters, similar to its parent 'Himalaya'. 'Marion', a selection from 'Chehalem' and 'Olallie', contained almost all of the volatile compounds in its pedigree at moderate amounts. It had a very balanced volatile pattern as reported previously (12).

(i) Terpenes. Terpenes have very diverse flavor, ranging from turpentine and resinous impressions to citrus and flowery notes. 'Marion' had almost the complete terpene spectrum; however, the concentration of most terpene compounds was very low. All other cultivars contained much higher terpene levels, especially 'Olallie' and 'Logan'. 'Olallie' and 'Logan' had high concentrations of myrcene, limonene, α -terpinolene, linalool, α -terpineol, nerol, and geraniol. The terpene profile in raspberry was completely different from that of blackberries. Only two-thirds of terpenes were identified in 'Meeker' raspberry; the major compounds were α -phellandrene, α -terpinene, linalool, 4-terpineol, α -terpineol, verbenone, myrtenol, nerol, and geraniol, in agreement with a previous study (13).

Linalool was one of the most important aroma compounds in blackberries, contributing to a floral note (12, 14, 15). 'Logan' had a very high content of linalool, as did its progeny 'Olallie'. Both 'Santiam' and 'Himalaya' had relatively low linalool contents; their progeny 'Chehalem' had only half the linalool compared with its parents. It is interesting to note that a low content of linalool in its maternal parent, 'Chehalem', and a high content of linalool in its paternal parent, 'Olallie', gave 'Marion' an intermediate level of linalool. The pattern suggested that linalool could be inherited in an additive fashion in blackberry. Linalool was reported to be highly heritable in strawberries (5). Similarly, a high content of *p*-cymen-8-ol in 'Himalaya' and a low content in 'Santiam' resulted in an intermediate level in 'Chehalem'. However, the inheritance pattern was not obvious

1341 (Z)-nose oxide* 2007 19+0.1bA 2.53+0.0bdeB 129+0.7eB ND 2.0+0.bbdeB 7.1+0.4bB ND ND 1354 (E)-nose oxide* 2007 ND ND ND ND ND ND ND N	RI	compound	year	Marion	Chehalem	Santiam	Himalaya	Olallie	Logan	red raspberry (cv. Meeker)
1855 c.philaindarian 2007 9.5 ± 0.20 M 9.8 ± 0.10 M 19 ± 16 M 2008 24 ± 10 M 20 ± 10 M 20		terpenes								
1989 mysame 2007 72±0c23A 5.1 ± 0.2 ± 0.2 ± 0.4 ± 0.2	1165	α-nhellandrene								
1199 myscane	1100	a prioriariarono								
1900 c-tempinene	1169	myrcene								
1800 cs-sepreme		,								
2006 80±01nA 13±01nB 58±4cB 83±tcB 11.1±07nA 80±01cB 3±±chA ND 1276 c-terpriolene 2007 ND ND 10±thA ND 8±±chA 30±2±chA ND 1276 c-terpriolene 2007 6±01nbB ND 2±±chA 30±2±chA ND 1276 c-terpriolene 2007 5±01nA 0±01nA	1180	α-terpinene								
1202 Immonene 2007 ND										
2008 ND	1202	limonene								
1276 c-t-epipholene				ND	$3.5\pm0.6 \mathrm{bB}$					ND
1341 (2)-rose oxide\$ 2007 19±01bA 253±0.046b 12±0.07eB ND 20±0.04cB 7.1±0.04 35±0.04A ND ND 1354 (E)-rose oxide\$ 2007 ND ND ND 49±0.01bA ND ND ND ND ND ND ND N	1276	α-terpinolene		6.6 ± 0.1 abB						0.8 ± 0.1 aA
2008 14±0 1bcA 18±0 1cA 106±0.7eA ND 1.1±0.1bA 35±0.1dA ND ND ND ND ND ND ND N			2008	3.0 ± 0.1 aA	0.9 ± 0.1 aA	$42 \pm 4 \mathrm{bB}$	35 ± 3 bB	32 ± 1 bA	$250 \pm 30 \mathrm{cB}$	0.6 ± 0.001 aA
2008 14±0 1bcA 18±0 1cA 106±0.7eA ND 1.1±0.1bA 35±0.1dA ND ND ND ND ND ND ND N	1341	(Z)-rose oxide b	2007	$1.9 \pm 0.1 \text{bA}$	$2.53\pm0.04\text{cB}$	$12.9 \pm 0.7 \mathrm{eB}$	ND	$2.0 \pm 0.4 \mathrm{bcB}$	$7.1\pm0.4\mathrm{dB}$	ND
1425 Z-j-liminolo ioride 2007 4 1 2.02 2.0 2.01			2008	$1.4 \pm 0.1 \text{bcA}$	1.8 ± 0.1 cA	$10.6 \pm 0.7 \text{eA}$	ND		$3.5\pm0.1\text{dA}$	ND
1425 (Z)-limatool oxide	1354	(E)-rose oxide ^b	2007	ND	ND	$4.9 \pm 0.1 \text{bA}$	ND	ND	ND	ND
1451 (E-Jinaluol oxide 2007			2008	ND	ND	$4.8 \pm 0.1 \text{bA}$	ND	ND	ND	ND
1451 (£)-linalool oxide 2007 18±016A 10±016A 25±0.1dB 0.8±0.1bA 3.5±0.5cB 3.5±0.5cB ND ND 1532 linalool 2007 19±25bA 24±1aA 70±3aA 52±1aB 1797±38dB 1500±38cA 70±2aB 1577 4-latpineol 2007 7.1±0.1aB 16.5±0.4bA 38±1cA 20±1aA 4.7±0.7aB 12±1bA 24±1aA 23±1aA 20±1aB 1797±38dB 1500±38cA 70±2aB 1577 4-latpineol 2007 7.1±0.1aB 16.5±0.4bA 38±1cA 20±1aA 4.7±0.7aB 12±1bA 24±1aA 24±1aA 4.7±0.7aB 12±1bA 24±1aA 24±1aA 4.7±0.7aB 12±1bA 24±1aA 24±1aB 24±1aA 24±1aB 24±1aA 24±1aB 24±1aA 24±1aB 24±1aA 24±1aB 24±1aA 24±1aB 2	1425	(Z)-linalool oxide	2007	$4.1\pm0.2 \mathrm{cB}$	$\rm 2.0 \pm 0.5 bB$	$2.3\pm0.2\text{bB}$	$2.0\pm0.2\text{bA}$	$5.9 \pm 0.7 \mathrm{eB}$	$5.1\pm0.9\mathrm{dB}$	ND
1522 Inalon			2008	$2.03 \pm 0.05 \text{cA}$	$1.3 \pm 0.1 \text{bA}$	-aA	1.8 ± 0.1 cA	$2.8\pm0.2\text{dA}$	$4.6\pm0.1\text{eA}$	ND
1522 Inialoo 2007 190 ± 256A 24 ± 1aA 70 ± 3aA 52 ± 1aB 1797 ± 38 dB 1500 ± 36cA 70 ± 2aB 22 ± 1aA 70 ± 7aA 43 ± 2aA 800 ± 30cA 100 ± 40 dB 42 ± 1aA 42 ± 1aA 43 ± 2aA 800 ± 30cA 100 ± 40 dB 42 ± 1aA 42 ± 1aA 43 ± 2aA 800 ± 30cA 100 ± 40 dB 42 ± 1aA 42 ± 1aA 43 ± 2aA 800 ± 30cA 100 ± 40 ± 40 ± 40 ± 40 ± 40 ± 40 ± 40	1451	(E)-linalool oxide	2007	$1.8 \pm 0.1 \text{cA}$	$1.0 \pm 0.1 \text{bA}$	$2.5\pm0.1\mathrm{dB}$	$0.8 \pm 0.1 \text{bA}$	$3.5\pm0.5 \mathrm{eB}$	$3.5\pm0.5 \mathrm{eA}$	ND
2008 184±3hA 22±1aA 70±7aA 43±2aA 800±30cA 1790±40dB 42±1aA 2177 4-tepineol 2007 7.1±0.1aB 16.5±0.dbA 38±1cA 201±1dA 4.7±0.7aB 12±1bA 214±4aB 214±bA 214±4aB 214±bA 214±4aB 214±bA 214±4aB 214±bA 214±bA 214±bAB			2008	$1.8 \pm 0.1 \text{cA}$	$0.76\pm0.05\text{bA}$	1.5 ± 0.07 cA	$0.8 \pm 0.1 \text{bA}$	$2.3\pm0.2\text{dA}$	$4.05\pm0.03\text{eA}$	ND
1577	1532	linalool	2007	$190\pm25\text{bA}$	$24\pm1\text{aA}$	$70\pm3aA$	$52\pm1aB$	$1797\pm38\mathrm{dB}$	$\rm 1500 \pm 38cA$	$70\pm2aB$
2006			2008	$194\pm3\mathrm{bA}$	$23 \pm 1aA$	$70 \pm 7aA$	$43\pm2aA$	$800 \pm 30 \mathrm{cA}$	$1790\pm40\mathrm{dB}$	$42\pm1aA$
1581 1-p-mentha-9-all	1577	4-terpineol	2007	$7.1 \pm 0.1 \mathrm{aB}$	$16.5\pm0.4\text{bA}$	$38 \pm 1 cA$	$201\pm1 dA$	$4.7\pm0.7aB$	$12 \pm 1bA$	$214 \pm 4 \mathrm{eB}$
1672 1,8-menthadien-4-of 2007 18±0 to 1b4 57±0 sc6s 20±1eA 12±1dA 10 ND ND ND ND ND ND ND N			2008	$6.3 \pm 0.2 abA$	$15.2\pm0.4\text{bA}$	$65\pm1~\mathrm{dB}$	$190 \pm 10 \mathrm{eA}$	3.5 ± 0.01 aA	$14.0 \pm 0.3 \mathrm{bB}$	$50.6 \pm 0.3 \text{cA}$
1672 1,8-menthadien-4-ol ⁶ 2007 1.8±0.1hA 5.7±0.5cB 20±1eA 12±1dA ND ND ND ND 1677 verbenone 2007 1.4±0.2aA ND 2.5±0.1aA 1.3±1dB ND ND ND ND 81±4bB 1682 borneol 2007 4.2±0.1aB 6.7±0.2aB 7.6±0.3aA 83±8 83±8 16±1cB 33±1dA 8.7±0.3aB 1684 α-terpineol 2007 4.2±0.1aB 6.7±0.2aB 7.6±0.5bA 51±8cB 10.1±0.4cA 3.4±2dA 5.2±0.1abA 1.3±0.0bB 1100±50eA 17.6±0.3bB 1684 α-terpineol 2007 5.4±5aB 91±5aB 17.6±10bA 430±10cB 570±30aB 1100±50eA 17.6±30B 1684 α-terpineol 2007 5.4±5aB 91±5aB 17.6±10bA 430±10cB 570±30aB 1100±50eA 17.6±30B 2008 3.5±1aA 3.5±2aA 180±10bA 250±15cA 386±9dA 1350±50eB 14±1aA 17.05 cironellol 2007 6.8±0.1aB 2.2±0.3abB 61±1cA 10.4±0.6bB 10.6±0.1aB 12.7±0.3abB 1.2±0.01aB 17.0±0.01bA 2.0±15cA 386±9dA 1350±50eB 14±1aA 17.0±0.01bA 2.0±15cA 386±9dA 1350±50eB 14±1aA 17.0±0.01bA 2.0±15cA 386±9dA 1350±50eB 14±1aA 17.0±0.01bA 17.0±0.01bA 2.0±15cA 386±9dA 1350±50eB 14±1aA 17.0±0.0±0.0±0.0±0.0±0.0±0.0±0.0±0.0±0.0±	1581	1-p-mentha-9-al ^b	2007	$6.0 \pm 0.2 \mathrm{eB}$	$3.4 \pm 0.5 \mathrm{cB}$	1.1 ± 0.1 bA	1.1 ± 0.1 bA	$4.2\pm0.1\mathrm{dB}$	$7 \pm 1 \mathrm{fB}$	ND
1677 verbenone			2008	$4.9 \pm 0.1 \text{fA}$	$2.0 \pm 0.02 \mathrm{cA}$	$3.5\pm0.6 \mathrm{eB}$	1.3 ± 0.1 bA	$3.0 \pm 0.4 \mathrm{dA}$	$3.0 \pm 0.1 dA$	ND
1677 verbenone 2007 1.4±0.2aA ND 2.5±0.1aA 1.3±0.0aA ND ND ND 15±0.4eA 1682 borneol 2007 4.2±0.1aB 6.7±0.2aB 7.6±0.3bA 68±3eB 16±1eB 33±1dA 8.7±0.3bB 6.8±0.8bA 6.8±3eB 16±1eB 33±1dA 8.7±0.3bB 168±4 α-terpineol 2007 54±5aB 9±5aB 15aB 176±10bA 430±0.0bB 10±5eA 7.6±0.3bC 51±3eA 10.1±0.4cA 34±2dA 5.2±0.1abA 168±4 α-terpineol 2007 54±5aB 9±5aB 15aB 176±10bA 430±0.1cB 57±30B 110±5eA 7.6±3bB 170±6aB 1	1672	1,8-menthadien-4-olb	2007	1.8 ± 0.1 bA	$5.7 \pm 0.5 \mathrm{cB}$	$20 \pm 1 eA$	$12 \pm 1 dA$	ND	ND	ND
182 2008 4.4 ± 0.1 dB ND 3.0 ± 0.6cA 1.4 ± 0.1 bA ND ND 15.2 ± 0.4eA			2008	1.5 ± 0.06 bA	4.7 ± 0.4 cA	$23 \pm 1eA$	$13 \pm 1 dA$	ND	ND	ND
1682 borneol 2007 4.2±0.1aB 6.7±0.2abB 7.6±0.3bA 68±3eB 16±1cB 33±1dA 8.7±0.3bB 168±0cB 2008 2.8±0.1aA 3.9±0.2abA 7.6±0.5bcA 51±3eA 10.1±0.4cA 34±2dA 5.2±0.1abA 176±0bA 2007 54±5aB 91±5aB 176±10bA 430±10cB 570±30.0B 1100±50eA 176±3bB 176±0bA 430±10cB 570±30.0B 1100±50eA 14±1aA 43±0.101a 2.2±0.0±0A 2.2±0.1abA 3.9±0.1cA 4.3±0.101a 2.7±0.1abA 3.9±0.1cA 4.3±0.101a 2.7±0.1abA 3.9±0.1abA 3.9±0.1cA 4.3±0.101a 2.7±0.1abA 3.9±0.1abA 3.9±0.	1677	verbenone	2007	1.4 ± 0.2 aA	ND	2.5 ± 0.1 aA	1.3 ± 0.06 aA	ND	ND	$81 \pm 4 \mathrm{bB}$
1684 α-terpineol 2008 2.8 ± 0.1 aA 3.9 ± 0.2 abA 7.6 ± 0.5 bCa 51 ± 3 aA 10.1 ± 0.4 cA 3.4 ± 2.4 A 5.2 ± 0.1 abA 176 ± 3 bB 176 ± 10 bA 430 ± 10 cB 570 ± 30 dB 1100 ± 50 bA 176 ± 3 bB 176 ± 10 bA 430 ± 10 cB 570 ± 30 dB 1100 ± 50 bA 176 ± 3 bB 176 ± 10 bA 430 ± 10 cB 570 ± 30 dB 1100 ± 50 bA 176 ± 3 bB 176 ± 10 bA 430 ± 10 bB 570 ± 30 dB 1100 ± 50 bA 176 ± 3 bB 176 ± 10 bA 430 ± 10 bA 2005 ± 15 cA 30 ± 50 cB 14 ± 1aA 14 ± 1aA 12 ± 1 cB 10.4 ± 0.6 bB 10.6 ± 0.1 bB 12.7 ± 0.3 bA 9.1 ± 0.1 aB 1.5 ± 0.1 aB 1.3 ± 0.0 aB 1.5 ± 0.0 a			2008	$4.4\pm0.1\mathrm{dB}$	ND	$3.0 \pm 0.6 \text{cA}$	1.4 ± 0.1 bA	ND	ND	$15.2\pm0.4\text{eA}$
1684 α-terpineol 2007 54 ± 5aB 91 ± 5aB 176 ± 10bA 430 ± 10cB 570 ± 30 dB 1100 ± 50eA 176 ± 3bB 1760 ± 10bA 250 ± 15cA 368 ± 9dA 1330 ± 50eB 14 ± 1aA 278 ± 0.2eA ND ND 4.3 ± 0.01 dB 2008 4.7 ± 0.1cB 5.8 ± 0.1 dB 5.9 ± 0.2 dB 27 ± 1eA ND ND 1.5 ± 0.01 bA 1.76 ± 0.1 bA 2008 4.7 ± 0.1 cB 5.8 ± 0.1 dB 5.9 ± 0.2 dB 27 ± 1eA ND ND 1.5 ± 0.01 bA 1.76 ± 0.1 bA 2008 5.8 ± 0.1 aB 9.2 ± 0.3 abB 61 ± 1cA 10.4 ± 0.6 bB 10.6 ± 0.1 bB 12.7 ± 0.3 bA 9.1 ± 0.1 aB 2.7 ± 0.3 bA 9.1 ± 0.1 aB 3.1 ± 0.0 1bB 6.1 ± 0.2 bA 3.1 ± 0.1 aB 3.1 ± 0.1 aB 6.1 ± 0.3 bA 3.1 ± 0.1 aB 3.1 ± 0.0 aB 3	1682	borneol	2007	$4.2 \pm 0.1 aB$	$6.7\pm0.2 \mathrm{abB}$	$7.6 \pm 0.3 \mathrm{bA}$	$68 \pm 3 \mathrm{eB}$	$16 \pm 1 \mathrm{cB}$	$33 \pm 1 dA$	$8.7\pm0.3 \mathrm{bB}$
2008 35 ± 1aA 35 ± 2aA 180 ± 10bA 250 ± 15cA 368 ± 9dA 1330 ± 50eB 14 ± 1aA 1706 carvone 2007 2.3 ± 0.1bA 3.9 ± 0.1cA 4.3 ± 0.1dB 27.5 ± 0.2eA ND ND ND 4.3 ± 0.01dB 27.5 ± 0.2eA ND ND ND 1.5 ± 0.01bA 1.5 ± 0.01bA 1.0 ± 0.0bB 1.0 ± 0.01bA 1.0 ± 0.0bB 1.0 ± 0.01bA 1.0 ± 0.0bB 1.0 ± 0.01bB			2008	$2.8 \pm 0.1 aA$	$3.9 \pm 0.2 abA$	$7.6 \pm 0.5 \text{bcA}$	$51 \pm 3eA$	10.1 ± 0.4 cA	$34 \pm 2 dA$	5.2 ± 0.1 abA
1706 carvone 2007 2.3±0.1bA 3.3±0.1cA 4.3±0.1dB 27.8±0.2eA ND ND 1.5±0.01bA 1769 citronellol 2008 4.7±0.1cB 5.8±0.1 dB 5.9±0.2 dB 27±1eA ND ND 1.5±0.01bA 1.5±0.01bA 1769 citronellol 2007 6.8±0.1 aB 2.2±0.3abB 61±1cA 10.4±0.66B 10.6±0.1bB 12.7±0.3bA 9.1±0.1aB 1794 myrtenol ⁰ 2007 1.9±0.1aA 5.7±0.4abA 25±1cA 51±4eB 4.1±0.5aB 6.5±0.3bA 37±1 dB 2008 1.5±0.1aA 5.7±0.4abA 25±1cA 51±4eB 4.1±0.5aB 6.5±0.3bA 37±1 dB 2008 1.5±0.1aA 5.3±0.4abA 30±1 dB 41±4eA 2.5±0.1aA 7.0±0.5bA 15±1cA 1801 nopol 2007 2.2±0.1aA 16±1 bB 28±1cA 86±6 dB 1.3±0.01aA 2.5±0.03aA 3.2±0.04aB 1810 nerol 2007 4.2±0.2aA 4.4±0.3aA 19±1bA 7.5±0.6aA 27.8±0.4cB 57±2eA 33±1 dB 2008 4.2±0.4aA 4.7±0.2aA 34±1 dB 6.8±0.4aB 14.0±0.8bB 116±1 eB 19.0±0.1cA 1821 isogeraniol ^c 2007 0.6±0.02aA 2.7±0.1abA 118±4cA 4.0±0.1abA 1.8±0.1abB 3.0±0.2abA 4.6±0.4bA 1810 pcymen-8-ol ^c 2007 0.6±0.02aA 2.7±0.1abA 118±4cA 4.0±0.1abA 1.3±0.01aA 1.2±0.6aB 5.7±0.8aB 39±1bA 4.0±0.1abA 1.3±0.0aBA 4.2±0.6aB 5.7±0.5aB 1859 pcymen-8-ol ^c 2007 1.1±0.04aB 1.8±0.06aB 1.6±0.4aB 170±2.9±0.A ND	1684	α -terpineol	2007	$54 \pm 5 \mathrm{aB}$	$91 \pm 5aB$	$176 \pm 10 \mathrm{bA}$	$430\pm10 \mathrm{cB}$	$570\pm30\mathrm{dB}$	$1100 \pm 50 \mathrm{eA}$	$176 \pm 3 \mathrm{bB}$
2008			2008	$35 \pm 1aA$	$35 \pm 2aA$	$180 \pm 10 \mathrm{bA}$	$250 \pm 15 \mathrm{cA}$	$368 \pm 9 dA$	$1330 \pm 50 \mathrm{eB}$	$14 \pm 1aA$
1769 citronellol 2007 6.8±0.1aB 9.2±0.3abB 61±1cA 10.4±0.6bB 10.6±0.1bB 12.7±0.3bA 9.1±0.1aB 2008 5.8±0.1aA 6.1±0.1aA 97±4cB 8.5±0.2aA 7.2±0.2aA 30±0.01bB 6±1aA 1794 myrtenol³ 2007 1.9±0.1aA 5.7±0.4abA 25±1cA 51±4eB 4.1±0.5aB 6.5±0.3bA 37±1dB 2008 1.5±0.1aA 5.3±0.4abA 30±1dB 41±4eA 2.5±0.1aA 7.0±0.5bA 15±1cA 1801 nopol 2007 2.2±0.1aA 16±1bB 28±1cA 86±6dB 1.3±0.01aA 2.5±0.03aA 3.2±0.4aA 1810 nerol 2007 4.2±0.2aA 4.4±0.3aA 19±1bA 7.5±0.6aA 27.8±0.4cB 57±2eA 33±1dB 2008 4.2±0.4aA 4.7±0.2aA 34±1dB 6.8±0.4aA 1.0±0.8bA 116±1eB 19.0±0.1cA 1821 isogeraniol² 2007 0.6±0.02aA 2.7±0.1abA 118±4cA 4.0±0.1abA 1.8±0.1abB 3.0±0.2abA 4.6±0.4bA 1820 pcymen-8-ol² 2007 19±2aA 1000±7cA 104±9bA 1710±80dA ND	1706	carvone	2007	$2.3\pm0.1\text{bA}$	$3.9 \pm 0.1 \text{cA}$	$4.3 \pm 0.1 dA$	$27.8 \pm 0.2 \text{eA}$	ND	ND	$4.3\pm0.01~\mathrm{dB}$
2008 5.8 ± 0.1aA 6.1 ± 0.1aA 97 ± 4cB 8.5 ± 0.2aA 7.2 ± 0.2aA 30 ± 0.01bB 6 ± 1aA 1794 myrtenol ^b 2007 1.9 ± 0.1aA 5.7 ± 0.4abA 25 ± 1cA 51 ± 4eB 4.1 ± 0.5aB 6.5 ± 0.3bA 37 ± 1 dB 2008 1.5 ± 0.1aA 5.3 ± 0.4abA 30 ± 1 dB 41 ± 4eA 2.5 ± 0.1aA 7.0 ± 0.5bA 37 ± 1 dB 41 ± 4eA 2.5 ± 0.1aA 7.0 ± 0.5bA 37 ± 1 dB 41 ± 4eA 2.5 ± 0.1aA 7.0 ± 0.5bA 37 ± 1 dB 41 ± 4eA 2.5 ± 0.1aA 7.0 ± 0.5bA 37 ± 1 dB 41 ± 4eA 2.5 ± 0.1aA 7.0 ± 0.5bA 32 ± 0.06aB 3.2 ± 0.4aA 2008 1.8 ± 0.2aA 13.9 ± 0.8bA 34 ± 1cB 57 ± 5dA 1.3 ± 0.01aA 3.2 ± 0.06aB 3.2 ± 0.4aA 3.2 ± 0.4aA 3.2 ± 0.06aB 3.2 ±			2008	$4.7\pm0.1 \mathrm{cB}$	$5.8\pm0.1\mathrm{dB}$	$5.9\pm0.2~\mathrm{dB}$	$27 \pm 1 eA$	ND	ND	1.5 ± 0.01 bA
1794 myrtenol ^b 2007 1.9 ± 0.1aA 5.7 ± 0.4abA 25 ± 1cA 51 ± 4eB 4.1 ± 0.5aB 6.5 ± 0.3bA 37 ± 1 dB 2008 1.5 ± 0.1aA 5.3 ± 0.4abA 30 ± 1 dB 41 ± 4eA 2.5 ± 0.1aA 7.0 ± 0.5bA 15 ± 1cA 15 ± 1cA 2007 2.2 ± 0.1aA 1.6 ± 1bB 2.8 ± 1cA 8.6 ± 6 dB 1.3 ± 0.01aA 2.5 ± 0.03aA 3.2 ± 0.4aA 2008 1.8 ± 0.2aA 13.9 ± 0.8bA 34 ± 1cB 57 ± 5dA 1.3 ± 0.01aA 3.2 ± 0.06aB 3.2 ± 0.4aA 3.2 ± 0.4aA 4.2 ± 0.2aA 4.4 ± 0.3aA 19 ± 1bA 7.5 ± 0.6aA 27.8 ± 0.4cB 57 ± 2eA 33 ± 1 dB 2008 4.2 ± 0.4aA 4.7 ± 0.2aA 34 ± 1dB 6.8 ± 0.4aA 4.0 ± 0.8bA 116 ± 1eB 19.0 ± 0.1cA 1821 isogeraniol ^c 2007 0.6 ± 0.02aA 2.7 ± 0.1abA 118 ± 4cA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA	1769	citronellol	2007	$6.8 \pm 0.1 \mathrm{aB}$	$9.2 \pm 0.3 \mathrm{abB}$	$61 \pm 1 cA$	$10.4 \pm 0.6 \mathrm{bB}$	$10.6 \pm 0.1 \mathrm{bB}$	12.7 ± 0.3 bA	$9.1\pm0.1 \mathrm{aB}$
2008 1.5 ± 0.1 aA 5.3 ± 0.4 abA 30 ± 1 dB 41 ± 4eA 2.5 ± 0.1 aA 7.0 ± 0.5 bA 15 ± 1 cA 2007 2.2 ± 0.1 aA 16 ± 1 bB 28 ± 1 cA 86 ± 6 dB 1.3 ± 0.01 aA 2.5 ± 0.0 aA 3.2 ± 0.0 aA 3.2 ± 0.0 aA 3.2 ± 0.0 aB 3.0 ± 0.2 ab 4.6 ± 0.0 aB 4.2 ±			2008	$5.8 \pm 0.1 aA$	$6.1 \pm 0.1 aA$	$97 \pm 4 \mathrm{cB}$	8.5 ± 0.2 aA	$7.2 \pm 0.2 aA$	$30 \pm 0.01 \mathrm{bB}$	$6 \pm 1aA$
2008 1.5 ± 0.1 aA 5.3 ± 0.4 abA 30 ± 1 dB 41 ± 4eA 2.5 ± 0.1 aA 7.0 ± 0.5 bA 15 ± 1 cA 2007 2.2 ± 0.1 aA 16 ± 1 bB 28 ± 1 cA 86 ± 6 dB 1.3 ± 0.01 aA 2.5 ± 0.0 aA 3.2 ± 0.0 aA 3.2 ± 0.0 aA 3.2 ± 0.0 aB 3.0 ± 0.2 ab 4.6 ± 0.0 aB 4.2 ±	1794	myrtenol ^b	2007	$1.9 \pm 0.1 aA$	$5.7 \pm 0.4 abA$	$25\pm1 cA$	$51 \pm 4 \mathrm{eB}$	$4.1 \pm 0.5 aB$	6.5 ± 0.3 bA	$37\pm1\mathrm{dB}$
2008 1.8 ± 0.2aA 13.9 ± 0.8bA 34 ± 1cB 57 ± 5dA 1.3 ± 0.01aA 3.2 ± 0.06aB 3.2 ± 0.4aA 3.2 ± 0.2aA 4.4 ± 0.3aA 19 ± 1bA 7.5 ± 0.6aA 27.8 ± 0.4cB 57 ± 2eA 33 ± 1 dB 2008 4.2 ± 0.4aA 4.7 ± 0.2aA 34 ± 1 dB 6.8 ± 0.4aA 14.0 ± 0.8bA 116 ± 1eB 19.0 ± 0.1cA 1821 isogeraniol° 2007 0.6 ± 0.02aA 2.7 ± 0.1abA 118 ± 4cA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA 4.6 ± 0.4bA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA 4.6			2008	$1.5 \pm 0.1 aA$	$5.3 \pm 0.4 abA$	$30\pm1~\mathrm{dB}$	$41 \pm 4eA$	2.5 ± 0.1 aA	$7.0 \pm 0.5 \mathrm{bA}$	$15\pm1\mathrm{cA}$
1810 nerol 2007 4.2 ± 0.2aA 4.4 ± 0.3aA 19 ± 1bA 7.5 ± 0.6aA 27.8 ± 0.4cB 57 ± 2eA 33 ± 1 dB 2008 4.2 ± 0.4aA 4.7 ± 0.2aA 34 ± 1 dB 6.8 ± 0.4aA 14.0 ± 0.8bA 116 ± 1eB 19.0 ± 0.1cA 1821 isogeraniol ^o 2007 0.6 ± 0.02aA 2.7 ± 0.1abA 118 ± 4cA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA 4.6 ± 0.4bA 4.6 ± 0.4bA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA	1801	nopol	2007	$2.2 \pm 0.1 aA$	$16\pm1 \mathrm{bB}$	$28 \pm 1 cA$	$86\pm6\mathrm{dB}$	$1.3 \pm 0.01 aA$	2.5 ± 0.03 aA	3.2 ± 0.4 aA
1810 nerol 2007 4.2 ± 0.2aA 4.4 ± 0.3aA 19 ± 1bA 7.5 ± 0.6aA 27.8 ± 0.4cB 57 ± 2eA 33 ± 1 dB 2008 4.2 ± 0.4aA 4.7 ± 0.2aA 34 ± 1 dB 6.8 ± 0.4aA 14.0 ± 0.8bA 116 ± 1eB 19.0 ± 0.1cA 1821 isogeraniol° 2007 0.6 ± 0.02aA 2.7 ± 0.1abA 118 ± 4cA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA 4.6 ± 0.4bA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA 4.6 ± 0.4bA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA			2008	$1.8 \pm 0.2 aA$	$13.9 \pm 0.8 \mathrm{bA}$	$34 \pm 1 \mathrm{cB}$	$57 \pm 5 dA$	1.3 ± 0.01 aA	$3.2 \pm 0.06 \mathrm{aB}$	3.2 ± 0.4 aA
1821 isogeraniol ^c 2007 0.6 ± 0.02aA 2.7 ± 0.1abA 118 ± 4cA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA 4.6 ± 0.4bA 2008 0.6 ± 0.06aA 3.4 ± 0.1aB 214 ± 8bB 6.1 ± 0.1aB 1.3 ± 0.08aA 4.2 ± 0.6aB 5.7 ± 0.5aB 1859 p-cymen-8-ol ^c 2007 19 ± 2aA 1000 ± 70cA 104 ± 9bA 1710 ± 80dA ND	1810	nerol	2007	4.2 ± 0.2 aA			$7.5 \pm 0.6 aA$	27.8 ± 0.4 cB		
2008 0.6 ± 0.06aA 3.4 ± 0.1aB 214 ± 8bB 6.1 ± 0.1aB 1.3 ± 0.08aA 4.2 ± 0.6aB 5.7 ± 0.5aB 1859 p-cymen-8-olc 2007 19 ± 2aA 1000 ± 70cA 104 ± 9bA 1710 ± 80dA ND			2008	4.2 ± 0.4 aA	4.7 ± 0.2 aA	$34\pm1\mathrm{dB}$	6.8 ± 0.4 aA	$14.0 \pm 0.8 \text{bA}$	$116 \pm 1eB$	$19.0\pm0.1\text{cA}$
1859 p-cymen-8-ol ^c 2007 19 ± 2aA 1000 ± 70cA 104 ± 9bA 1710 ± 80dA ND ND ND ND ND ND ND N	1821	isogeraniol ^c	2007	$0.6\pm0.02\text{aA}$	$2.7 \pm 0.1 abA$	$118 \pm 4cA$	4.0 ± 0.1 abA	$1.8 \pm 0.1 \mathrm{abB}$	$3.0 \pm 0.2 abA$	4.6 ± 0.4 bA
1859 p-cymen-8-ol ^c 2007 19 ± 2aA 1000 ± 70cA 104 ± 9bA 1710 ± 80dA ND ND ND ND ND ND ND N										
2008 13 ± 2aA 1300 ± 80cB 186 ± 9bB 1670 ± 90dA ND ND ND ND			2008	$0.6\pm0.06 \text{aA}$	$3.4\pm0.1\text{aB}$	$214\pm8\text{bB}$	$6.1\pm0.1\text{aB}$	$1.3\pm0.08 \text{aA}$	$4.2\pm0.6\text{aB}$	$5.7\pm0.5\mathrm{aB}$
2008 13 ± 2aA 1300 ± 80cB 186 ± 9bB 1670 ± 90dA ND ND ND ND	1859	p-cymen-8-ol ^c	2007	$19\pm2aA$	$1000\pm70\text{cA}$	$\rm 104 \pm 9bA$				
2012 perilla alcohol 2008 14±1aA 41±1bA 840±25fB 118±5cA 114±1cA 425±7eB 396±1 dB 2012 perilla alcohol 2007 1.1±0.04aB 1.8±0.06aB 106±6cA 239±2 dB ND ND ND 13.9±0.2bB 2018 0.6±0.02aA 0.8±0.07aA 122±6bB 133±6bA ND ND ND 0.6±0.001aA 2310 (E)-2,6-dimethylocta-2,7-diene-1,6-diol ^{ed} 2007 260±60bcA 183±5bA 290±50cA 390±9 dB 730±80eB 160±10bA ND ND 0.6±0.001aA 2,7-diene-1,6-diol ^{ed} 2008 510±90 dB 170±10bA 260±70cA 240±20bA 400±40cdA 530±50 dB ND ND 0.6±0.001aA 2,7-diene-1,6-diol ^{ed} 2008 71 36 59 28 94 203 455 1464 theaspirane A 2007 12.9±0.2cA ND 14.4±0.2cA ND 12.7±0.2bcA 16.7±0.7cA 10.1±0.01bA 2008 14.4±0.4 dB ND 19.7±0.2eB ND 12.7±0.2bcA 16.7±0.7cA 10.1±0.01bA 1500 theaspirane B 2007 14±1dA 4.2±0.001bA 10.6±0.4cB ND 13.9±0.05 dB 14±2dA 4.8±0.1bA 2008 15±1dA 4.2±0.001bA 6.3±0.4cA ND 6.1±0.4cA 29±1eB 4.6±0.5bcA 1810 β-damascenone 2007 7.2±0.001bA 7.1±0.001bA ND 7.3±0.01bA 7.1±0.001bA 7.5±0.001cA ND ND ND ND ND ND ND ND ND 3.5±0.1cB 3.3±0.1cA 9.2±0.004 dB			2008	$13 \pm 2aA$	$1300 \pm 80 \text{cB}$	$\rm 186 \pm 9bB$	$1670 \pm 90 \text{dA}$	ND	ND	ND
2012 perilla alcohol 2007 1.1 ± 0.04 aB 1.8 ± 0.06 aB 106 ± 6 cA 239 ± 2 dB ND ND 13.9 ± 0.2 bB 2008 0.6 ± 0.02 aA 0.8 ± 0.07 aA 122 ± 6 bB 133 ± 6 bA ND ND 0.6 ± 0.001 aA 2008 0.6 ± 0.02 aA 0.8 ± 0.07 aA 122 ± 6 bB 133 ± 6 bA ND ND 0.6 ± 0.001 aA 2008 2007 260 ± 60 bcA 183 ± 5 bA 290 ± 50 cA 290 ± 9 dB 730 ± 80 eB 160 ± 10 bA ND 2008 510 ± 90 dB 170 ± 10 bA 260 ± 70 cA 240 ± 20 bA 400 ± 40 cdA 2008 2009 200	1863	geraniol	2007	$17.7 \pm 0.3 aB$	$39 \pm 1 \text{bA}$	$420 \pm 14eA$	$132 \pm 1 \mathrm{cB}$	$172 \pm 1 \mathrm{fB}$	$260 \pm 10 \mathrm{dA}$	$168 \pm 5 \mathrm{fA}$
2010 (E) -2,6-dimethylocta-2,7-diene-1,6-diol ^d $= 2007 - 260 \pm 60$ bcA $= 183 \pm 5$ bA $= 290 \pm 50$ cA $= 390 \pm 9$ dB $= 730 \pm 80$ eB $= 160 \pm 10$ bA $= ND$ $= ND$ $= 160 \pm 10$ bA $= 160 \pm$			2008	$14 \pm 1aA$	$41 \pm 1 \text{bA}$	$840 \pm 25 \mathrm{fB}$	$118 \pm 5 cA$	$114 \pm 1 cA$	$425\pm7\mathrm{eB}$	$396\pm1\mathrm{dB}$
2310 (E) -2,6-dimethylocta-2,7-diene-1,6-diol ^d 2007 260 ± 60 bcA 183 ± 5 bA 290 ± 50 cA 390 ± 9 dB 730 ± 80 eB 160 ± 10 bA ND 2008 510 ± 90 dB 170 ± 10 bA 260 ± 70 cA 240 ± 20 bA 400 ± 40 cdA 530 ± 50 dB ND norisoprenoids 2007 69 36 57 32 104 194 720 2008 71 36 59 28 94 203 455 1464 theaspirane A 2007 12.9 ± 0.2 cA ND 14.4 ± 0.2 cA ND 12.7 ± 0.2 bcA 16.7 ± 0.7 cA 10.1 ± 0.01 bA 2008 14.4 ± 0.4 dB ND 19.7 ± 0.2 eB ND 12.7 ± 0.2 cA 35 ± 1 fB 10.1 ± 0.01 bA 1500 theaspirane B 2007 14 ± 1 dA 4.2 ± 0.001 bA $4.$	2012	perilla alcohol	2007	1.1 ± 0.04 aB	$1.8\pm0.06 aB$	$106 \pm 6 \mathrm{cA}$	$239\pm2\mathrm{dB}$	ND	ND	$13.9 \pm 0.2 \mathrm{bB}$
2,7-diene-1,6-diol d 2008 $510 \pm 90 \mathrm{dB}$ $170 \pm 10 \mathrm{bA}$ $260 \pm 70 \mathrm{cA}$ $240 \pm 20 \mathrm{bA}$ $400 \pm 40 \mathrm{cdA}$ $530 \pm 50 \mathrm{dB}$ ND norisoprenoids 2007 69 36 57 32 104 194 720 2008 71 36 59 28 94 203 455 1464 theaspirane A 2007 $12.9 \pm 0.2 \mathrm{cA}$ ND $14.4 \pm 0.2 \mathrm{cA}$ ND $12.7 \pm 0.2 \mathrm{bcA}$ $16.7 \pm 0.7 \mathrm{cA}$ $10.1 \pm 0.01 \mathrm{bA}$ 2008 $14.4 \pm 0.4 \mathrm{dB}$ ND $19.7 \pm 0.2 \mathrm{eB}$ ND $12.7 \pm 0.2 \mathrm{cA}$ $35 \pm 1 \mathrm{fB}$ $10.1 \pm 0.01 \mathrm{bA}$ 1500 theaspirane B 2007 $14 \pm 1 \mathrm{dA}$ $4.2 \pm 0.001 \mathrm{bA}$ $4.2 \pm 0.001 $				0.6 ± 0.02 aA	0.8 ± 0.07 aA	$122\pm6 \mathrm{bB}$	$133 \pm 6 \mathrm{bA}$	ND	ND	0.6 ± 0.001 aA
2,7-diene-1,6-diol d 2008 $510 \pm 90 \mathrm{dB}$ $170 \pm 10 \mathrm{bA}$ $260 \pm 70 \mathrm{cA}$ $240 \pm 20 \mathrm{bA}$ $400 \pm 40 \mathrm{cdA}$ $530 \pm 50 \mathrm{dB}$ ND norisoprenoids 2007 69 36 57 32 104 194 720 2008 71 36 59 28 94 203 455 1464 theaspirane A 2007 $12.9 \pm 0.2 \mathrm{cA}$ ND $14.4 \pm 0.2 \mathrm{cA}$ ND $12.7 \pm 0.2 \mathrm{bcA}$ $16.7 \pm 0.7 \mathrm{cA}$ $10.1 \pm 0.01 \mathrm{bA}$ 2008 $14.4 \pm 0.4 \mathrm{dB}$ ND $19.7 \pm 0.2 \mathrm{eB}$ ND $12.7 \pm 0.2 \mathrm{cA}$ $35 \pm 1 \mathrm{fB}$ $10.1 \pm 0.01 \mathrm{bA}$ 1500 theaspirane B 2007 $14 \pm 1 \mathrm{dA}$ $4.2 \pm 0.001 \mathrm{bA}$ $4.2 \pm 0.001 $	2310	(E)-2,6-dimethylocta-	2007	$260 \pm 60 \text{bcA}$	$183 \pm 5 \mathrm{bA}$	$290 \pm 50 \mathrm{cA}$	$390\pm 9\mathrm{dB}$		$160 \pm 10 \mathrm{bA}$	ND
norisoprenoids2008510 ± 90 dB170 ± 10bA260 ± 70cA240 ± 20bA400 ± 40cdA530 ± 50 dBNDnorisoprenoids200769365732104194720200871365928942034551464theaspirane A200712.9 ± 0.2cAND14.4 ± 0.2cAND12.7 ± 0.2bcA16.7 ± 0.7cA10.1 ± 0.01bA200814.4 ± 0.4 dBND19.7 ± 0.2eBND12.7 ± 0.2cA35 ± 1fB10.1 ± 0.01bA1500theaspirane B200714 ± 1dA4.2 ± 0.001bA10.6 ± 0.4cBND13.9 ± 0.05 dB14 ± 2dA4.8 ± 0.1bA200815 ± 1dA4.2 ± 0.001bA6.3 ± 0.4cAND6.1 ± 0.4cA29 ± 1eB4.6 ± 0.5bcA1810 β -damascenone20077.2 ± 0.001bA7.1 ± 0.001bAND7.3 ± 0.01bA7.1 ± 0.001bA7.1 ± 0.001bA7.1 ± 0.001bA1822dihydro- β -ionone $^{\phi}$ 20070.5 ± 0.01bANDNDND3.5 ± 0.1cB3.3 ± 0.1cA9.2 ± 0.04 dB										
1464 theaspirane A 2008 71 36 59 28 94 203 455 1464 theaspirane A 2007 12.9 ± 0.2cA ND 14.4 ± 0.2cA ND 12.7 ± 0.2bcA 16.7 ± 0.7cA 10.1 ± 0.01bA 15.00 theaspirane B 2007 14 ± 1dA 4.2 ± 0.001bA 10.6 ± 0.4cB ND 13.9 ± 0.05 dB 14 ± 2dA 4.8 ± 0.1bA 2008 15 ± 1dA 4.2 ± 0.001bA 6.3 ± 0.4cA ND 6.1 ± 0.4cA 29 ± 1eB 4.6 ± 0.5bcA 1810 β -damascenone 2007 7.2 ± 0.001bA 7.1 ± 0.001bA ND 7.3 ± 0.01bA 7.1 ± 0.001bA 7.1 ± 0.001bA 7.5 ± 0.001cA 1822 dihydro- β -ionone $^{\alpha}$ 2007 0.5 ± 0.01bA ND ND ND 3.5 ± 0.1cB 3.3 ± 0.1cA 9.2 ± 0.004 dB			2008	$510\pm 90\mathrm{dB}$	$170\pm10\text{bA}$	$260\pm70\text{cA}$	$240\pm20\text{bA}$	$400\pm40\text{cdA}$	$530\pm50\mathrm{dB}$	ND
1464 theaspirane A 2007 12.9 ± 0.2cA ND 14.4 ± 0.2cA ND 12.7 ± 0.2bcA 16.7 ± 0.7cA 10.1 ± 0.01bA 2008 14.4 ± 0.4 dB ND 19.7 ± 0.2eB ND 12.7 ± 0.2cA 35 ± 1fB 10.1 ± 0.01bA 1500 theaspirane B 2007 14 ± 1dA 4.2 ± 0.001bA 10.6 ± 0.4cB ND 13.9 ± 0.05 dB 14 ± 2dA 4.8 ± 0.1bA 2008 15 ± 1dA 4.2 ± 0.001bA 6.3 ± 0.4cA ND 6.1 ± 0.4cA 29 ± 1eB 4.6 ± 0.5bcA 1810 β -damascenone 2007 7.2 ± 0.001bA 7.1 ± 0.001bA ND 7.3 ± 0.01bA 7.1 ± 0.001bA 7.1 ± 0.001bA 7.5 ± 0.01cA 1822 dihydro- β -ionone $^{\alpha}$ 2007 0.5 ± 0.01bA ND ND ND 3.5 ± 0.1cB 3.3 ± 0.1cA 9.2 ± 0.04 dB		norisoprenoids	2007		36					
1500 theaspirane B 2008 14.4 ± 0.4 dB ND 19.7 ± 0.2 eB ND 12.7 ± 0.2 cA 35 ± 1 fB 10.1 ± 0.01 bA 15.0 0 theaspirane B 2007 14 ± 1 dA 4.2 ± 0.001 bA 10.6 ± 0.4 cB ND 13.9 ± 0.05 dB 14 ± 2 dA 4.8 ± 0.1 bA 2008 15 ± 1 dA 4.2 ± 0.001 bA 6.3 ± 0.4 cA ND 6.1 ± 0.4 cA 29 ± 1 eB 4.6 ± 0.5 bcA 1810 $β$ -damascenone 2007 7.2 ± 0.001 bA 7.1 ± 0.001 bA ND 7.3 ± 0.01 bA 7.1 ± 0.001 bA 7.1 ± 0.001 bA 182 dihydro- $β$ -ionone $β$ 2007 0.5 ± 0.01 bA ND ND ND 12.7 ± 0.02 cA 12.7 ± 0.02 cA 12.7 ± 0.02 cA 13.9 ± 0.05 cB 14 ± 2 dA 14 ± 2 d										
1500 theaspirane B 2007 $14\pm 1 dA$ $4.2\pm 0.001 bA$ $10.6\pm 0.4 cB$ ND $13.9\pm 0.05 dB$ $14\pm 2 dA$ $4.8\pm 0.1 bA$ 2008 $15\pm 1 dA$ $4.2\pm 0.001 bA$ $6.3\pm 0.4 cA$ ND $6.1\pm 0.4 cA$ $29\pm 1 eB$ $4.6\pm 0.5 bcA$ 1810 β-damascenone 2007 $7.2\pm 0.001 bA$ $7.1\pm 0.001 bA$ ND $7.3\pm 0.01 bA$ 7.1 ± 0.001 bA	1464	theaspirane A								
2008 15±1dA 4.2±0.001bA 6.3±0.4cA ND 6.1±0.4cA 29±1eB 4.6±0.5bcA 1810 β-damascenone 2007 7.2±0.001bA 7.1±0.001bA ND 7.3±0.01bA 7.1±0.001bA 7.1±0.2bB 7.8±0.1cA 2008 7.0±0.001bA 7.0±0.001bA ND 8.1±0.1 dB 7.2±0.001cA ND 7.5±0.001cA 1822 dihydro-β-ionone e 2007 0.5±0.01bA ND ND ND 3.5±0.1cB 3.3±0.1cA 9.2±0.04 dB			2008	$14.4\pm0.4\mathrm{dB}$	ND	$19.7 \pm 0.2 \mathrm{eB}$		12.7 ± 0.2 cA	$35 \pm 1 \text{fB}$	$10.1\pm0.01\text{bA}$
1810 β-damascenone2007 7.2 ± 0.001bA7.1 ± 0.001bAND7.3 ± 0.01bA7.1 ± 0.001bA7.1 ± 0.2bB7.8 ± 0.1cA2008 7.0 ± 0.001bA7.0 ± 0.001bAND8.1 ± 0.1 dB7.2 ± 0.001cAND7.5 ± 0.001cA1822 dihydro-β-ionone e 2007 $0.5 \pm 0.01bA$ NDNDND3.5 ± 0.1cB3.3 ± 0.1cA9.2 ± 0.04 dB	1500	theaspirane B			$4.2\pm0.001\text{bA}$	$10.6\pm0.4\text{cB}$		$13.9\pm0.05~\mathrm{dB}$		
2008 7.0 ± 0.001 bA 7.0 ± 0.001 bA ND 8.1 ± 0.1 dB 7.2 ± 0.001 cA ND 7.5 ± 0.001 cA 1822 dihydro-β-ionone ^e 2007 0.5 ± 0.01 bA ND ND ND 3.5 ± 0.1 cB 3.3 ± 0.1 cA 9.2 ± 0.04 dB			2008	$15\pm1 dA$	$4.2\pm0.001\text{bA}$	6.3 ± 0.4 cA	ND	6.1 ± 0.4 cA	$29\pm1 \mathrm{eB}$	$4.6\pm0.5\text{bcA}$
$1822 \hspace{0.1cm} \text{dihydro-}\beta\text{-ionone}^{\theta} \hspace{0.2cm} 2007 \hspace{0.1cm} 0.5 \pm 0.01 \text{bA} \hspace{0.2cm} \text{ND} \hspace{0.2cm} \text{ND} \hspace{0.2cm} 3.5 \pm 0.1 \text{cB} \hspace{0.2cm} 3.3 \pm 0.1 \text{cA} \hspace{0.2cm} 9.2 \pm 0.04 \hspace{0.1cm} \text{dB} \hspace{0.2cm} 1820 \hspace{0.1cm} \text{dB} \hspace{0.1cm} 1820 0.1cm$	1810	eta-damascenone	2007	$7.2\pm0.001\text{bA}$	$7.1\pm0.001\text{bA}$	ND	$7.3\pm0.01\text{bA}$	$7.1\pm0.001\text{bA}$	$7.1\pm0.2\text{bB}$	$7.8\pm0.1\text{cA}$
1822 dihydro- β -ionone e 2007 0.5 \pm 0.01bA ND ND ND 3.5 \pm 0.1cB 3.3 \pm 0.1cA 9.2 \pm 0.04 dB			2008	$7.0\pm0.001\text{bA}$	$7.0\pm0.001\text{bA}$	ND	$8.1\pm0.1\mathrm{dB}$	$7.2 \pm 0.001 \text{cA}$	ND	$7.5\pm0.001\text{cA}$
	1822	dihydro- β -ionone e	2007	$0.5\pm0.01\text{bA}$	ND	ND	ND	$3.5\pm0.1\text{cB}$		$9.2\pm0.04\mathrm{dB}$
			2008	$0.9\pm0.1 \mathrm{bB}$	ND	ND	ND	1.9 ± 0.2 cA	$3.9 \pm 0.2 \mathrm{eB}$	$2.3\pm0.1 \mathrm{dA}$

Table 4. Continued

RI	compound	year	Marion	Chehalem	Santiam	Himalaya	Olallie	Logan	red raspberry (cv. Meeker)
1844	α -ionone	2007	5.2 ± 0.001aA	4.6 ± 0.001aA	5.6 ± 0.01aA	4.4 ± 0.01aB	5.7 ± 0.001aA	12.2 ± 0.4bB	185 ± 3cA
1908	$lpha$ -ionol e	2008	5.1 ± 0.01 bA 2.3 ± 0.01 bB	4.8 ± 0.001bA ND	5.3 ± 0.6 bA 4.2 ± 0.2 bA	ND ND	5.7 ± 0.001 bA 3.8 ± 0.1 bB	10.6 ± 0.01cA 11.3 ± 0.8cA	$197 \pm 3 \text{dB}$ $124 \pm 2 \text{dB}$
1006	0 ionono	2008	1.9 ± 0.1 bA	ND	6.3 ± 0.1cB	ND	2.7 ± 0.3 bA	10.4 ± 0.5dA	27 ± 1eA
936	eta-ionone	2007	22.8 ± 0.1aA	20.3 ± 0.01 aA	20.3 ± 0.1 aA	20.3 ± 0.1 aA	52 ± 1bA	115 ± 4cB	$360 \pm 20 \text{dB}$
064	dihydro-β-ionol ^e	2008 2007	24.1 ± 0.6 aB 0.6 ± 0.02 bA	20.3 ± 0.01 aA ND	20.3 ± 0.01 aA 1.5 ± 0.02 cA	20.3 ± 0.1aA ND	53.2 ± 0.5 bA 3.3 ± 0.1 dB	$100 \pm 1 \mathrm{cA}$ $5.3 \pm 0.8 \mathrm{eA}$	$189\pm2 ext{dA}$ ND
904	ainyaro-p-ionoi	2007	$0.6 \pm 0.020A$ $0.6 \pm 0.020A$	ND	1.5 ± 0.02 CA 1.5 ± 0.1 cA	ND ND	1.6 ± 0.07cA	$7.2 \pm 0.2 \text{dB}$	ND ND
678	4-oxo-β-ionone ^e	2007	1.0 ± 0.02 BA	ND	ND	ND	1.0 ± 0.07 CA 1.1 ± 0.04 bA	$1.5 \pm 0.2 \text{ GB}$	$9.6\pm0.5\mathrm{dB}$
.070	4-0x0- <i>p</i> -1011011e	2007	0.6 ± 0.07 bA	ND	ND	ND	1.0 ± 0.1cA	1.3 ± 0.2 dA	7.8 ± 0.4 eA
833	4-hydroxy-β-ionone ^e	2007	1.0 ± 0.07 bA	ND	ND	ND	0.6 ± 0.06 abA	4.7 ± 0.2cB	6.1 ± 0.7 dA
.000	+ Hydroxy p tohono	2008	1.1 ± 0.1 bA	ND	ND	ND	1.0 ± 0.1bB	2.2 ± 0.1cA	6.8 ± 0.6 dA
856	3-oxo- α -ionol ^e	2007	0.6 ± 0.02 bA	ND	ND	ND	ND	0.9 ± 0.09 cA	1.9 ± 0.1 dB
-000	o one a lener	2008	0.4 ± 0.001 bA	ND	ND	ND	ND	1.4 ± 0.1cB	1.3 ± 0.1cA
2861	4-oxo-β-ionol ^e	2007	0.9 ± 0.02 bA	ND	ND	ND	ND	1.5 ± 0.1 cA	1.8 ± 0.1dA
	. one promor	2008	$0.8 \pm 0.01 \text{bA}$	ND	ND	ND	ND	1.3 ± 0.1 cA	1.4 ± 0.1 cA
	shikimic acid derivatives	2007	1981	2010	1952	1414	758	1794	876
		2008	1084	2037	3180	1114	656	1962	1666
885	phenylmethanol	2007	1680 ± 20eB	1340 ± 90cA	1440 ± 60cdA	790 ± 80bA	360 ± 5aA	1630 ± 90deA	700 ± 80bA
000	O allow deller !	2008	900 ± 80bA	1500 ± 100cA	1760 ± 90cA	690 ± 50abA	340 ± 60 aA	1780 ± 90cA	1510 ± 90cB
1920	2-phenylethanol	2007	180 ± 2bB	420 ± 20cA	66 ± 4aA	490 ± 70cB	177 ± 1bA	100 ± 10aA	$65 \pm 5aA$
2010	4 phonylhuton 0 -1	2008	$90 \pm 4aA$	$360 \pm 50 \text{bA}$	$70 \pm 1aA$	$320 \pm 50 \text{bA}$	170 ± 10 aA 30 ± 4 cB	90 ± 10aA	110 ± 20aB
2010	4-phenylbutan-2-ol	2007	29 ± 3cB	115 ± 9 dB	114 ± 12dA	12 ± 1bA		2.0 ± 0.1aA	-aA
110	cumic alcohol	2008 2007	18 ± 2bA ND	68 ± 5 cA 4.8 ± 0.4 bA	$210 \pm 20 \mathrm{dB}$ $5.6 \pm 0.2 \mathrm{bA}$	13 ± 2 bA 33.0 ± 0.3 cB	19 ± 1 bA ND	3.8 ± 0.2 aB ND	-aA 68 ± 1 dB
119	curric alcorioi		ND ND	4.8 ± 0.4 bA 4.3 ± 0.1 bA	$5.0 \pm 0.20A$ $7.2 \pm 0.5cA$	13 ± 1dA	ND ND	ND ND	16 ± 1 uB
2303	cinnamyl alcohol	2008 2007	$30 \pm 3bA$	113 ± 10 dB	$7.2 \pm 0.30A$ 238 ± 5eA	58 ± 10cA	75 ± 9cB	ND ND	ND
.000	Cirilarityi alconor	2007	$23 \pm 4bA$	73 ± 9cA	1020 ± 20 dB	50 ± 10cA	18 ± 2bA	ND	12 ± 1bB
755	methyl salicylate	2007	38 ± 1eB	5.0 ± 0.1 bA	9.5 ± 0.4cA	ND	$78.5 \pm 0.5 fA$	13.3 ± 0.2dA	3.8 ± 0.01 b
700	motifyi odiloyidto	2008	33 ± 0.3 eA	5.3 ± 0.1 bA	12.7 ± 0.3cB	ND	76.0 ± 0.0 fA	$16.5 \pm 0.2 \text{dB}$	4.6 ± 0.01 b
182	eugenol	2007	1.8 ± 0.01 aB	0.9 ± 0.1 aB	$22 \pm 1 dA$	5.7 ± 0.1cB	3.7 ± 0.1 bB	5.7 ± 0.5 cA	5.9 ± 0.4cB
	cugonor	2008	1.0 ± 0.01 aA	0.6 ± 0.05 aA	44 ± 2cB	2.5 ± 0.1 aA	2.3 ± 0.1 aA	8.1 ± 0.4bB	2.3 ± 0.1 aA
360	chavicol ^f	2007	5.4 ± 0.1 cA	ND	6.1 ± 0.1 cA	5.4 ± 0.9 cB	3.2 ± 0.2 bA	ND	$20 \pm 2 dB$
		2008	4.6 ± 0.4 cA	ND	$5.9 \pm 0.1 dA$	ND	2.5 ± 0.2 bA	8 ± 1eA	$11.0 \pm 0.5 fA$
	:		ND	ND	$14.3 \pm 0.1 dA$	ND	13.2 ± 0.1 bA	14.0 ± 0.1cA	13.9 ± 0.01 cE
364	Isoeudenoi	2007							
2364	isoeugenol	2007 2008			$15.2 \pm 0.01 \mathrm{dB}$	$3.2 \pm 0.1 \text{bB}$	13.9 ± 0.01 cA	$19.0 \pm 0.6 { m eB}$	ND
	methoxyeugenol ^f	2007 2008 2007	ND 17 ± 3bcA	12.7 ± 0.01cB 11 ± 1bA	$15.2 \pm 0.01 \mathrm{dB}$ $37 \pm 6 \mathrm{eA}$	$3.2 \pm 0.1 \mathrm{bB}$ $20 \pm 3 \mathrm{cA}$	13.9 ± 0.01 cA 18 ± 4 bcA	$19.0 \pm 0.6 \mathrm{eB}$ $29 \pm 2 \mathrm{dA}$	ND ND
	· ·	2008	ND	$12.7\pm0.01\text{cB}$					
2364	· ·	2008 2007 2008 2007	ND 17 ± 3bcA 14 ± 2bA	12.7 ± 0.01cB 11 ± 1bA 13 ± 2bA	$37 \pm 6 \text{eA}$ $35 \pm 4 \text{dA}$ 3628	20 ± 3 cA 22.8 ± 0.5 cA 6338	18 ± 4bcA 14 ± 2bA 6707	$29 \pm 2 dA$ $37 \pm 4 dB$ 5472	ND ND 22916
	methoxyeugenol ^f	2008 2007 2008 2007 2008	ND 17 ± 3bcA 14 ± 2bA 6141 5655	12.7 ± 0.01cB 11 ± 1bA 13 ± 2bA 3603 5324	37 ± 6eA 35 ± 4dA 3628 6908	20 ± 3cA 22.8 ± 0.5cA 6338 8838	18 ± 4bcA 14 ± 2bA 6707 6570	$29 \pm 2 dA$ $37 \pm 4 dB$ 5472 12854	ND ND 22916 14202
	methoxyeugenol ^f	2008 2007 2008 2007 2008 2007	ND 17 ± 3bcA 14 ± 2bA 6141 5655 3350	$12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ 3603 \\ 5324 \\ 2211 \\ \\$	37 ± 6eA 35 ± 4dA 3628 6908 1061	20 ± 3cA 22.8 ± 0.5cA 6338 8838 2470	18 ± 4bcA 14 ± 2bA 6707 6570 1312	29 ± 2dA 37 ± 4 dB 5472 12854 826	ND ND 22916 14202 182
2571	methoxyeugenol ^f lipid derivatives C6 compounds	2008 2007 2008 2007 2008 2007 2008	ND 17 ± 3bcA 14 ± 2bA 6141 5655 3350 3330	$12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ \\$	37 ± 6eA 35 ± 4dA 3628 6908 1061 2100	20 ± 3cA 22.8 ± 0.5cA 6338 8838 2470 4580	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620	29 ± 2dA 37 ± 4 dB 5472 12854 826 1080	ND ND 22916 14202 182 1017
571	methoxyeugenol ^f	2008 2007 2008 2007 2008 2007 2008 2007	ND 17 ± 3bcA 14 ± 2bA 6141 5655 3350 3330 550 ± 40dA	$12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ \\$	37 ± 6eA 35 ± 4dA 3628 6908 1061 2100 180 ± 30bA	20 ± 3cA 22.8 ± 0.5cA 6338 8838 2470 4580 210 ± 8bcA	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA	29 ± 2dA 37 ± 4 dB 5472 12854 826 1080 200 ± 30bcA	ND ND 22916 14202 182 1017 16 ± 3aA
1092	methoxyeugenol ^f lipid derivatives C6 compounds hexanal	2008 2007 2008 2007 2008 2007 2008 2007 2008	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 4 0dA 780 ± 3 0bB	$12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ \\$	37 ± 6eA 35 ± 4dA 3628 6908 1061 2100 180 ± 30bA 420 ± 30aB	20 ± 3cA 22.8 ± 0.5cA 6338 8838 2470 4580 210 ± 8bcA 1240 ± 90cB	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB	29 ± 2dA 37 ± 4 dB 5472 12854 826 1080 200 ± 30bcA 390 ± 90aB	ND ND 22916 14202 182 1017 16 ± 3aA 490 ± 30aB
2571	methoxyeugenol ^f lipid derivatives C6 compounds	2008 2007 2008 2007 2008 2007 2008 2007 2008 2007	ND 17 ± 3bcA 14 ± 2bA 6141 5655 3350 3330 550 ± 40dA 780 ± 30bB 200 ± 30cA	$12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ \\$	37 ± 6eA 35 ± 4dA 3628 6908 1061 2100 180 ± 30bA 420 ± 30aB 120 ± 8abA	20 ± 3cA 22.8 ± 0.5cA 6338 8838 2470 4580 210 ± 8bcA 1240 ± 90cB 510 ± 10dA	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA	29 ± 2dA 37 ± 4 dB 5472 12854 826 1080 200 ± 30bcA 390 ± 90aB 90 ± 6abA	ND ND 22916 14202 182 1017 16 ± 3aA 490 ± 30aB 72 ± 4aA
092	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal	2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 40 dA 780 ± 30 bB 200 ± 30 cA 460 ± 40 aB	$12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{aB} \\ \\$	37 ± 6eA 35 ± 4dA 3628 6908 1061 2100 180 ± 30bA 420 ± 30aB 120 ± 8abA 490 ± 40aB	$20 \pm 3 \text{cA}$ $22.8 \pm 0.5 \text{cA}$ 6338 8838 2470 4580 $210 \pm 8 \text{bcA}$ $1240 \pm 90 \text{cB}$ $510 \pm 10 \text{dA}$ $1800 \pm 10 \text{bB}$	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB	29 ± 2dA 37 ± 4 dB 5472 12854 826 1080 200 ± 30bcA 390 ± 90aB 90 ± 6abA 300 ± 40aB	ND ND 22916 14202 182 1017 $16 \pm 3aA$ $490 \pm 30aB$ $72 \pm 4aA$ $370 \pm 40aB$
092	methoxyeugenol ^f lipid derivatives C6 compounds hexanal	2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 40 dA 780 ± 30 bB 200 ± 30 cA 460 ± 40 aB 820 ± 90 dA	$12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{aB} \\ 440 \pm 60 \text{cA} \\ \\ \\$	37 ± 6eA 35 ± 4dA 3628 6908 1061 2100 180 ± 30bA 420 ± 30aB 120 ± 8abA 490 ± 40aB 200 ± 40bA	20 ± 3cA 22.8 ± 0.5cA 6338 8838 2470 4580 210 ± 8bcA 1240 ± 90cB 510 ± 10dA 1800 ± 10bB 1080 ± 60eA	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA	29 ± 2dA 37 ± 4 dB 5472 12854 826 1080 200 ± 30bcA 390 ± 90aB 90 ± 6abA 300 ± 40aB 18 ± 1aA	ND ND 22916 14202 182 1017 $16 \pm 3aA$ $490 \pm 30aB$ $72 \pm 4aA$ $370 \pm 40aB$ $49 \pm 1aB$
092 219 355	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal 1-hexanol	2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008	ND 17 ± 3bcA 14 ± 2bA 6141 5655 3350 3330 550 ± 40dA 780 ± 30bB 200 ± 30cA 460 ± 40aB 820 ± 90dA 710 ± 90cA	$\begin{array}{c} 12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ \hline 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{aB} \\ 440 \pm 60 \text{cA} \\ 570 \pm 80 \text{cA} \\ \end{array}$	37 ± 6eA 35 ± 4dA 3628 6908 1061 2100 180 ± 30bA 420 ± 30aB 120 ± 8abA 490 ± 40aB 200 ± 40bA 390 ± 40bB	$20 \pm 3\text{cA}$ $22.8 \pm 0.5\text{cA}$ 6338 8838 2470 4580 $210 \pm 8\text{bcA}$ $1240 \pm 90\text{cB}$ $510 \pm 10\text{dA}$ $1800 \pm 10\text{bB}$ $1080 \pm 60\text{eA}$ $1060 \pm 90\text{dA}$	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA 400 ± 30bB	$\begin{array}{c} 29 \pm 2 \text{dA} \\ 37 \pm 4 \text{ dB} \\ \\ \hline \\ \textbf{5472} \\ \textbf{12854} \\ \textbf{826} \\ \textbf{1080} \\ 200 \pm 30 \text{bcA} \\ 390 \pm 90 \text{aB} \\ 90 \pm 6 \text{abA} \\ 300 \pm 40 \text{aB} \\ 18 \pm 1 \text{aA} \\ 20 \pm 1 \text{aA} \\ \end{array}$	ND ND 14202 182 1017 $16 \pm 3aA$ $490 \pm 30aB$ $72 \pm 4aA$ $370 \pm 40aB$ $49 \pm 1aB$ $17 \pm 2aA$
092 219 355	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal	2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 40 dA 780 ± 30 bB 200 ± 30 cA 460 ± 40 aB 820 ± 90 dA 710 ± 90 cA 410 ± 50 eB	$\begin{array}{c} 12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ \hline 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{aB} \\ 440 \pm 60 \text{cA} \\ 570 \pm 80 \text{cA} \\ 310 \pm 40 \text{dA} \\ \end{array}$	37 ± 6eA 35 ± 4dA 3628 6908 1061 2100 180 ± 30bA 420 ± 30aB 120 ± 8abA 490 ± 40aB 200 ± 40bA 390 ± 40bB 190 ± 40cA	20 ± 3cA 22.8 ± 0.5cA 6338 8838 2470 4580 210 ± 8bcA 1240 ± 90cB 510 ± 10dA 1800 ± 10bB 1080 ± 60eA 1060 ± 90dA ND	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA 400 ± 30bB ND	$\begin{array}{c} 29 \pm 2 \text{dA} \\ 37 \pm 4 \text{ dB} \\ \\ \hline \\ \textbf{5472} \\ \textbf{12854} \\ \textbf{826} \\ \textbf{1080} \\ 200 \pm 30 \text{bcA} \\ 390 \pm 90 \text{aB} \\ 90 \pm 6 \text{abA} \\ 300 \pm 40 \text{aB} \\ 18 \pm 1 \text{aA} \\ 20 \pm 1 \text{aA} \\ 78 \pm 2 \text{bB} \\ \\ \end{array}$	ND ND 14202 182 1017 $16 \pm 3aA$ $490 \pm 30aB$ $72 \pm 4aA$ $370 \pm 40aB$ $49 \pm 1aB$ $17 \pm 2aA$ $45 \pm 5bA$
092 219 355 379	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal 1-hexanol (Z)-3-hexen-1-ol	2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 40 dA 780 ± 30 bB 200 ± 30 cA 460 ± 40 aB 820 ± 90 dA 710 ± 90 cA 410 ± 50 eB 240 ± 40 bA	$\begin{array}{c} 12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ \hline \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{aB} \\ 440 \pm 60 \text{cA} \\ 570 \pm 80 \text{cA} \\ 310 \pm 40 \text{dA} \\ 440 \pm 60 \text{cA} \\ \end{array}$	37 ± 6eA 35 ± 4dA 3628 6908 1061 2100 180 ± 30bA 420 ± 30aB 120 ± 8abA 490 ± 40aB 200 ± 40bA 390 ± 40bB 190 ± 40cA 150 ± 20bA	20 ± 3cA 22.8 ± 0.5cA 6338 8838 2470 4580 210 ± 8bcA 1240 ± 90cB 510 ± 10dA 1800 ± 10bB 1080 ± 60eA 1060 ± 90dA ND ND	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA 400 ± 30bB ND ND	$\begin{array}{c} 29 \pm 2 \text{dA} \\ 37 \pm 4 \text{ dB} \\ \\ \hline \\ \textbf{5472} \\ \textbf{12854} \\ \textbf{826} \\ \textbf{1080} \\ 200 \pm 30 \text{bcA} \\ 390 \pm 90 \text{aB} \\ 90 \pm 6 \text{abA} \\ 300 \pm 40 \text{aB} \\ 18 \pm 1 \text{aA} \\ 20 \pm 1 \text{aA} \\ 78 \pm 2 \text{bB} \\ 50 \pm 10 \text{abA} \\ \end{array}$	ND ND ND 22916 14202 182 1017 $16 \pm 3aA$ $490 \pm 30aB$ $72 \pm 4aA$ $370 \pm 40aB$ $49 \pm 1aB$ $17 \pm 2aA$ $45 \pm 5bA$ $140 \pm 20bB$
092 219 355 379	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal 1-hexanol	2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 40 dA 780 ± 30 bB 200 ± 30 cA 460 ± 40 aB 820 ± 90 dA 710 ± 90 cA 410 ± 50 eB	$\begin{array}{c} 12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ \hline 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{aB} \\ 440 \pm 60 \text{cA} \\ 570 \pm 80 \text{cA} \\ 310 \pm 40 \text{dA} \\ \end{array}$	37 ± 6eA 35 ± 4dA 3628 6908 1061 2100 180 ± 30bA 420 ± 30aB 120 ± 8abA 490 ± 40aB 200 ± 40bA 390 ± 40bB 190 ± 40cA	20 ± 3cA 22.8 ± 0.5cA 6338 8838 2470 4580 210 ± 8bcA 1240 ± 90cB 510 ± 10dA 1800 ± 10bB 1080 ± 60eA 1060 ± 90dA ND	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA 400 ± 30bB ND	$\begin{array}{c} 29 \pm 2 \text{dA} \\ 37 \pm 4 \text{ dB} \\ \\ \hline \\ \textbf{5472} \\ \textbf{12854} \\ \textbf{826} \\ \textbf{1080} \\ 200 \pm 30 \text{bcA} \\ 390 \pm 90 \text{aB} \\ 90 \pm 6 \text{abA} \\ 300 \pm 40 \text{aB} \\ 18 \pm 1 \text{aA} \\ 20 \pm 1 \text{aA} \\ 78 \pm 2 \text{bB} \\ \\ \end{array}$	ND ND 14202 182 1017 $16 \pm 3aA$ $490 \pm 30aB$ $72 \pm 4aA$ $370 \pm 40aB$ $49 \pm 1aB$ $17 \pm 2aA$ $45 \pm 5bA$
1092 1219 1355 1379	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal 1-hexanol (Z)-3-hexen-1-ol	2008 2007 2008 2008	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 40 dA 780 ± 30 bB 200 ± 30 cA 460 ± 40 aB 820 ± 90 dA 710 ± 90 cA 410 ± 50 eB 240 ± 40 bA 1370 ± 90 dA	$12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{cB} \\ 440 \pm 60 \text{cA} \\ 570 \pm 80 \text{cA} \\ 310 \pm 40 \text{dA} \\ 440 \pm 60 \text{cA} \\ 1070 \pm 90 \text{cA} \\ 1720 \pm 90 \text{eB} \\ \\ 21$	37 ± 6eA 35 ± 4dA 3628 6908 1061 2100 180 ± 30bA 420 ± 30aB 120 ± 8abA 490 ± 40aB 200 ± 40bA 390 ± 40bB 190 ± 40cA 150 ± 20bA 340 ± 60bA	20 ± 3cA 22.8 ± 0.5cA 6338 8838 2470 4580 210 ± 8bcA 1240 ± 90cB 510 ± 10dA 1800 ± 10bB 1080 ± 60eA 1060 ± 90dA ND ND 500 ± 30bA	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA 400 ± 30bB ND ND 490 ± 10bA	$\begin{array}{c} 29 \pm 2 \text{dA} \\ 37 \pm 4 \text{ dB} \\ \\ \hline \\ \textbf{5472} \\ \textbf{12854} \\ \textbf{826} \\ \textbf{1080} \\ 200 \pm 30 \text{bcA} \\ 390 \pm 90 \text{aB} \\ 90 \pm 6 \text{abA} \\ 300 \pm 40 \text{aB} \\ 18 \pm 1 \text{aA} \\ 20 \pm 1 \text{aA} \\ 78 \pm 2 \text{bB} \\ 50 \pm 10 \text{abA} \\ 250 \pm 50 \text{bA} \\ \end{array}$	ND ND ND 22916 14202 182 1017 16 ± 3aA 490 ± 30aB 72 ± 4aA 370 ± 40aB 49 ± 1aB 17 ± 2aA 45 ± 5bA 140 ± 20bB ND
092 219 355 379	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal 1-hexanol (Z)-3-hexen-1-ol (E)-2-hexen-1-ol	2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 40 dA 780 ± 30 bB 200 ± 30 cA 460 ± 40 aB 820 ± 90 dA 710 ± 90 cA 410 ± 50 eB 240 ± 40 bA 1370 ± 90 dA 1140 ± 90 dA	$\begin{array}{c} 12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ \hline \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{aB} \\ 440 \pm 60 \text{cA} \\ 570 \pm 80 \text{cA} \\ 310 \pm 40 \text{dA} \\ 440 \pm 60 \text{cA} \\ 1070 \pm 90 \text{cA} \\ 1720 \pm 90 \text{eB} \\ \\ \end{array}$	37 ± 6eA 35 ± 4dA 3628 6908 1061 2100 180 ± 30bA 420 ± 30aB 120 ± 8abA 490 ± 40aB 200 ± 40bA 390 ± 40bB 190 ± 40cA 150 ± 20bA 340 ± 60bA 650 ± 50cB	20 ± 3cA 22.8 ± 0.5cA 6338 8838 2470 4580 210 ± 8bcA 1240 ± 90cB 510 ± 10dA 1800 ± 10bB 1080 ± 60eA 1060 ± 90dA ND ND 500 ± 30bA 480 ± 50bcA	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA 400 ± 30bB ND ND 490 ± 10bA 1020 ± 40 dB	$\begin{array}{c} 29 \pm 2 \text{dA} \\ 37 \pm 4 \text{ dB} \\ \\ \hline \\ \textbf{5472} \\ \textbf{12854} \\ \textbf{826} \\ \textbf{1080} \\ 200 \pm 30 \text{bcA} \\ 390 \pm 90 \text{aB} \\ 90 \pm 6 \text{abA} \\ 300 \pm 40 \text{aB} \\ 18 \pm 1 \text{aA} \\ 20 \pm 1 \text{aA} \\ 78 \pm 2 \text{bB} \\ 50 \pm 10 \text{abA} \\ 250 \pm 50 \text{bA} \\ 320 \pm 60 \text{bA} \\ \end{array}$	ND ND ND 22916 14202 182 1017 16 ± 3aA 490 ± 30aB 72 ± 4aA 370 ± 40aB 49 ± 1aB 17 ± 2aA 45 ± 5bA 140 ± 20bB ND
092 219 355 379 400	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal 1-hexanol (Z)-3-hexen-1-ol (E)-2-hexen-1-ol	2008 2007 2008 2009 2008 2009 2009 2009 2009 2009	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 4 0dA 780 ± 3 0bB 200 ± 3 0cA 460 ± 4 0aB 820 ± 9 0dA 710 ± 9 0cA 410 ± 5 0eB 240 ± 4 0bA 1370 ± 9 0dA 1140 ± 9 0dA	$12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{cB} \\ 440 \pm 60 \text{cA} \\ 570 \pm 80 \text{cA} \\ 310 \pm 40 \text{dA} \\ 440 \pm 60 \text{cA} \\ 1070 \pm 90 \text{cA} \\ 1720 \pm 90 \text{eB} \\ \\ 21$	$37 \pm 6eA$ $35 \pm 4dA$ 3628 6908 1061 2100 $180 \pm 30bA$ $420 \pm 30aB$ $120 \pm 8abA$ $490 \pm 40aB$ $200 \pm 40bA$ $390 \pm 40bB$ $190 \pm 40cA$ $150 \pm 20bA$ $340 \pm 60bA$ $650 \pm 50cB$	20 ± 3cA 22.8 ± 0.5cA 6338 8838 2470 4580 210 ± 8bcA 1240 ± 90cB 510 ± 10dA 1800 ± 10bB 1080 ± 60eA 1060 ± 90dA ND ND ND S00 ± 30bA 480 ± 50bcA	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA 400 ± 30bB ND ND 490 ± 10bA 1020 ± 40 dB	$\begin{array}{c} 29 \pm 2 \text{dA} \\ 37 \pm 4 \text{ dB} \\ \end{array}$ $\begin{array}{c} \textbf{5472} \\ \textbf{12854} \\ \textbf{826} \\ \textbf{1080} \\ 200 \pm 30 \text{bcA} \\ 390 \pm 90 \text{aB} \\ 90 \pm 6 \text{abA} \\ 300 \pm 40 \text{aB} \\ 18 \pm 1 \text{aA} \\ 20 \pm 1 \text{aA} \\ 78 \pm 2 \text{bB} \\ 50 \pm 10 \text{abA} \\ 250 \pm 50 \text{bA} \\ 320 \pm 60 \text{bA} \\ \end{array}$	ND ND ND 22916 14202 182 1017 16 ± 3aA 490 ± 30aB 72 ± 4aA 370 ± 40aB 49 ± 1aB 17 ± 2aA 45 ± 5bA 140 ± 20bB ND ND 64 ND
092 219 355 379 400	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal 1-hexanol (Z)-3-hexen-1-ol (E)-2-hexen-1-ol	2008 2007 2008 2008	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 40 dA 780 ± 30 bB 200 ± 30 cA 460 ± 40 aB 820 ± 90 dA 710 ± 90 cA 410 ± 50 eB 240 ± 40 bA 1370 ± 90 dA 1140 ± 90 dA 391 567	$\begin{array}{c} 12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ \hline 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{cB} \\ 440 \pm 60 \text{cA} \\ 570 \pm 80 \text{cA} \\ 310 \pm 40 \text{dA} \\ 440 \pm 60 \text{cA} \\ 1070 \pm 90 \text{cA} \\ 1720 \pm 90 \text{eB} \\ \\ \hline 21 \\ 18 \\ 3.0 \pm 0.001 \text{aB} \\ 1.4 \pm 0.001 \text{aA} \\ \end{array}$	$37 \pm 6eA$ $35 \pm 4dA$ 3628 6908 1061 2100 $180 \pm 30bA$ $420 \pm 30aB$ $120 \pm 8abA$ $490 \pm 40aB$ $200 \pm 40bA$ $390 \pm 40bB$ $190 \pm 40cA$ $150 \pm 20bA$ $340 \pm 60bA$ $650 \pm 50cB$ 31 80 $6 \pm 1aA$ $61 \pm 3bB$	$20 \pm 3\text{cA}$ $22.8 \pm 0.5\text{cA}$ 6338 8838 2470 4580 $210 \pm 8\text{bcA}$ $1240 \pm 90\text{cB}$ $510 \pm 10\text{dA}$ $1800 \pm 10\text{bB}$ $1080 \pm 60\text{eA}$ $1060 \pm 90\text{dA}$ ND ND $500 \pm 30\text{bA}$ $480 \pm 50\text{bcA}$ 170 110 $158 \pm 7\text{bB}$ $100 \pm 20\text{bcA}$	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA 400 ± 30bB ND ND ND 490 ± 10bA 1020 ± 40 dB 172 157 153 ± 1bB 133 ± 5cA	29 ± 2dA 37 ± 4 dB 5472 12854 826 1080 200 ± 30bcA 390 ± 90aB 90 ± 6abA 300 ± 40aB 18 ± 1aA 20 ± 1aA 78 ± 2bB 50 ± 10abA 250 ± 50bA 320 ± 60bA	ND ND ND 22916 14202 182 1017 16 ± 3aA 490 ± 30aB 72 ± 4aA 370 ± 40aB 49 ± 1aB 17 ± 2aA 45 ± 5bA 140 ± 20bB ND ND
1092 1219 1355 1379 1400	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal 1-hexanol (Z)-3-hexen-1-ol (E)-2-hexen-1-ol	2008 2007 2008 2008	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 4 0dA 780 ± 3 0bB 200 ± 3 0cA 460 ± 4 0aB 820 ± 9 0dA 710 ± 9 0cA 410 ± 5 0eB 240 ± 4 0bA 1370 ± 9 0dA 1140 ± 9 0dA 391 567 360 ± 5 0cA	$\begin{array}{c} 12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ \hline 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{aB} \\ 440 \pm 60 \text{cA} \\ 570 \pm 80 \text{cA} \\ 310 \pm 40 \text{dA} \\ 440 \pm 60 \text{cA} \\ 1720 \pm 90 \text{cB} \\ \\ \hline 21 \\ 18 \\ 3.0 \pm 0.001 \text{aB} \\ \end{array}$	$37 \pm 6eA$ $35 \pm 4dA$ 3628 6908 1061 2100 $180 \pm 30bA$ $420 \pm 30aB$ $120 \pm 8abA$ $490 \pm 40aB$ $200 \pm 40bA$ $390 \pm 40bB$ $190 \pm 40cA$ $150 \pm 20bA$ $340 \pm 60bA$ $650 \pm 50cB$	$20 \pm 3\text{cA}$ $22.8 \pm 0.5\text{cA}$ $23.8 \pm 0.5\text{cA}$ 6338 8838 2470 4580 $210 \pm 8\text{bcA}$ $1240 \pm 90\text{cB}$ $510 \pm 10\text{dA}$ $1800 \pm 10\text{bB}$ $1080 \pm 60\text{eA}$ $1060 \pm 90\text{dA}$ ND ND $500 \pm 30\text{bA}$ $480 \pm 50\text{bcA}$ 170 110 $158 \pm 7\text{bB}$	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA 400 ± 30bB ND ND ND 1020 ± 40 dB 172 157 153 ± 1bB 133 ± 5cA ND	29 ± 2dA 37 ± 4 dB 5472 12854 826 1080 200 ± 30bcA 390 ± 90aB 90 ± 6abA 300 ± 40aB 18 ± 1aA 20 ± 1aA 78 ± 2bB 50 ± 10abA 250 ± 50bA 320 ± 60bA 190 423 160 ± 40bA	ND ND ND 22916 14202 182 1017 16 ± 3aA 490 ± 30aB 72 ± 4aA 370 ± 40aB 49 ± 1aB 17 ± 2aA 45 ± 5bA 140 ± 20bB ND ND 64 ND
2571 092 219 355 379 400	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal 1-hexanol (Z)-3-hexen-1-ol (E)-2-hexen-1-ol carbonyls 2-heptanone 2-undecanone	2008 2007 2008 2008	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 4 0dA 780 ± 3 0bB 200 ± 3 0cA 460 ± 4 0aB 820 ± 9 0dA 710 ± 9 0cA 410 ± 5 0eB 240 ± 4 0bA 1370 ± 9 0dA 1140 ± 9 0dA 391 567 360 ± 5 0cA 540 ± 4 0eB	$\begin{array}{c} 12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ \hline \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{cB} \\ 440 \pm 60 \text{cA} \\ 570 \pm 80 \text{cA} \\ 310 \pm 40 \text{dA} \\ 440 \pm 60 \text{cA} \\ 1070 \pm 90 \text{cA} \\ 1720 \pm 90 \text{cB} \\ \hline \\ \\ 21 \\ 18 \\ 3.0 \pm 0.001 \text{aB} \\ 1.4 \pm 0.001 \text{aA} \\ \text{ND} \\ \text{ND} \\ \end{array}$	$37 \pm 6eA$ $35 \pm 4dA$ 3628 6908 1061 2100 $180 \pm 30bA$ $420 \pm 30aB$ $120 \pm 8abA$ $490 \pm 40aB$ $200 \pm 40bA$ $390 \pm 40bB$ $190 \pm 40cA$ $150 \pm 20bA$ $340 \pm 60bA$ $650 \pm 50cB$ 31 80 $6 \pm 1aA$ $61 \pm 3bB$	$20 \pm 3\text{cA}$ $22.8 \pm 0.5\text{cA}$ 6338 8838 2470 4580 $210 \pm 8\text{bcA}$ $1240 \pm 90\text{cB}$ $510 \pm 10\text{dA}$ $1800 \pm 10\text{bB}$ $1080 \pm 60\text{eA}$ $1060 \pm 90\text{dA}$ ND ND $500 \pm 30\text{bA}$ $480 \pm 50\text{bcA}$ 170 110 $158 \pm 7\text{bB}$ $100 \pm 20\text{bcA}$	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA 400 ± 30bB ND ND ND 490 ± 10bA 1020 ± 40 dB 172 157 153 ± 1bB 133 ± 5cA	29 ± 2dA 37 ± 4 dB 5472 12854 826 1080 200 ± 30bcA 390 ± 90aB 90 ± 6abA 300 ± 40aB 18 ± 1aA 20 ± 1aA 78 ± 2bB 50 ± 10abA 250 ± 50bA 320 ± 60bA 190 423 160 ± 40bA 410 ± 60 dB ND	ND ND ND 14202 182 1017 16 ± 3aA 490 ± 30aB 72 ± 4aA 370 ± 40aB 49 ± 1aB 17 ± 2aA 45 ± 5bA 140 ± 20bB ND ND ND 64 ND 32 ± 4bB ND 32 ± 4bB ND 8.1 ± 0.1 dB
2571 1092 1219 1355 1379 1400	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal 1-hexanol (Z)-3-hexen-1-ol (E)-2-hexen-1-ol	2008 2007 2008 2008	ND 17 ± 3 bcA 14 ± 2 bA $14 \pm $	$\begin{array}{c} 12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ \hline \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{cB} \\ 440 \pm 60 \text{cA} \\ 570 \pm 80 \text{cA} \\ 310 \pm 40 \text{dA} \\ 440 \pm 60 \text{cA} \\ 1070 \pm 90 \text{cA} \\ 1720 \pm 90 \text{cB} \\ \hline \\ \\ 21 \\ 18 \\ 3.0 \pm 0.001 \text{aB} \\ 1.4 \pm 0.001 \text{aA} \\ \text{ND} \\ \text{ND} \\ 17.7 \pm 0.1 \text{cA} \\ \end{array}$	$37 \pm 6eA$ $35 \pm 4dA$ 3628 6908 1061 2100 $180 \pm 30bA$ $420 \pm 30aB$ $120 \pm 8abA$ $490 \pm 40aB$ $200 \pm 40bA$ $390 \pm 40bB$ $190 \pm 40cA$ $150 \pm 20bA$ $340 \pm 60bA$ $650 \pm 50cB$ 31 80 $6 \pm 1aA$ $61 \pm 3bB$ $6.2 \pm 0.2bA$ $6.3 \pm 0.1cA$ $19 \pm 2cdB$	$20 \pm 3\text{cA}$ $22.8 \pm 0.5\text{cA}$ $22.8 \pm 0.5\text{cA}$ 6338 8838 2470 4580 $210 \pm 8\text{bcA}$ $1240 \pm 90\text{cB}$ $510 \pm 10\text{dA}$ $1800 \pm 10\text{bB}$ $1080 \pm 60\text{eA}$ $1060 \pm 90\text{dA}$ ND ND $500 \pm 30\text{bA}$ $480 \pm 50\text{bcA}$ 170 110 $158 \pm 7\text{bB}$ $100 \pm 20\text{bcA}$ ND ND $12 \pm 1\text{bA}$	$18 \pm 4 \text{bcA}$ $14 \pm 2 \text{bA}$ 6707 6570 1312 2620 $273 \pm 3 \text{cA}$ $800 \pm 30 \text{bB}$ $130 \pm 20 \text{bA}$ $400 \pm 40 \text{aB}$ $247 \pm 7 \text{bA}$ $400 \pm 30 \text{bB}$ ND ND ND $490 \pm 10 \text{bA}$ $1020 \pm 40 \text{ dB}$ 172 157 $153 \pm 1 \text{bB}$ $133 \pm 5 \text{cA}$ ND ND ND $19 \pm 2 \text{cdA}$	29 ± 2dA 37 ± 4 dB 5472 12854 826 1080 200 ± 30bcA 390 ± 90aB 90 ± 6abA 300 ± 40aB 18 ± 1aA 20 ± 1aA 78 ± 2bB 50 ± 10abA 250 ± 50bA 320 ± 60bA 190 423 160 ± 40bA 410 ± 60 dB ND ND 30 ± 4eB	ND ND ND 14202 182 1017 16 ± 3aA 490 ± 30aB 72 ± 4aA 370 ± 40aB 49 ± 1aB 17 ± 2aA 45 ± 5bA 140 ± 20bB ND ND ND 64 ND 32 ± 4bB ND 8.1 ± 0.1 dB ND
2571 1092 1219 1355 1379 1400	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal 1-hexanol (Z)-3-hexen-1-ol (E)-2-hexen-1-ol carbonyls 2-heptanone 2-undecanone	2008 2007 2008 2008	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 4 0dA 780 ± 3 0bB 200 ± 3 0cA 460 ± 4 0aB 820 ± 9 0dA 710 ± 9 0cA 410 ± 5 0eB 240 ± 4 0bA 1370 ± 9 0dA 1140 ± 9 0dA 140 ± 9 0dA	$\begin{array}{c} 12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ \hline \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{cB} \\ 440 \pm 60 \text{cA} \\ 570 \pm 80 \text{cA} \\ 310 \pm 40 \text{dA} \\ 440 \pm 60 \text{cA} \\ 1070 \pm 90 \text{cA} \\ 1720 \pm 90 \text{cB} \\ \hline \\ \\ 21 \\ 18 \\ 3.0 \pm 0.001 \text{aB} \\ 1.4 \pm 0.001 \text{aA} \\ \text{ND} \\ \text{ND} \\ \end{array}$	$37 \pm 6eA$ $35 \pm 4dA$ 3628 6908 1061 2100 $180 \pm 30bA$ $420 \pm 30aB$ $120 \pm 8abA$ $490 \pm 40aB$ $200 \pm 40bA$ $390 \pm 40bB$ $190 \pm 40cA$ $150 \pm 20bA$ $340 \pm 60bA$ $650 \pm 50cB$ 31 80 $6 \pm 1aA$ $61 \pm 3bB$ $6.2 \pm 0.2bA$ $6.3 \pm 0.1cA$	20 ± 3cA 22.8 ± 0.5cA 6338 8838 2470 4580 210 ± 8bcA 1240 ± 90cB 510 ± 10dA 1800 ± 10bB 1080 ± 60eA 1060 ± 90dA ND ND 500 ± 30bA 480 ± 50bcA 170 110 158 ± 7bB 100 ± 20bcA ND ND	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA 400 ± 30bB ND ND ND 490 ± 10bA 1020 ± 40 dB 172 157 153 ± 1bB 133 ± 5cA ND ND	29 ± 2dA 37 ± 4 dB 5472 12854 826 1080 200 ± 30bcA 390 ± 90aB 90 ± 6abA 300 ± 40aB 18 ± 1aA 20 ± 1aA 78 ± 2bB 50 ± 10abA 250 ± 50bA 320 ± 60bA 190 423 160 ± 40bA 410 ± 60 dB ND	ND ND ND 22916 14202 182 1017 16 ± 3aA 490 ± 30aB 72 ± 4aA 370 ± 40aB 49 ± 1aB 17 ± 2aA 45 ± 5bA 140 ± 20bB ND ND ND 64 ND 32 ± 4bB ND 32 ± 4bB ND 8.1 ± 0.1 dB
2571 1092 1219 1355 1379 1400	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal 1-hexanol (Z)-3-hexen-1-ol (E)-2-hexen-1-ol carbonyls 2-heptanone 2-undecanone	2008 2007 2008 2009 2008 2009 2008 2009 2008 2009 2008 2009 2008 2009 2009	ND 17 ± 3 bcA 14 ± 2 bA 6141 5655 3350 3330 550 ± 4 0dA 780 ± 3 0bB 200 ± 3 0cA 460 ± 4 0aB 820 ± 9 0dA 710 ± 9 0cA 410 ± 5 0eB 240 ± 4 0bA 1370 ± 9 0dA 1140 ± 9 0dA 391 567 360 ± 5 0cA 540 ± 4 0eB 7.0 ± 0.7 bB 5.4 ± 0.1 bA 24 ± 0.001 dB 21.5 ± 0.5 cA	$12.7 \pm 0.01cB \\ 11 \pm 1bA \\ 13 \pm 2bA$ $3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20bcA \\ 800 \pm 90bB \\ 140 \pm 10bA \\ 410 \pm 60aB \\ 440 \pm 60cA \\ 570 \pm 80cA \\ 310 \pm 40dA \\ 440 \pm 60cA \\ 1070 \pm 90cA \\ 1720 \pm 90eB$ $21 \\ 18 \\ 3.0 \pm 0.001aB \\ 1.4 \pm 0.001aA \\ ND \\ ND \\ 17.7 \pm 0.1cA \\ 16.5 \pm 0.01bA$	$37 \pm 6eA$ $35 \pm 4dA$ 3628 6908 1061 2100 $180 \pm 30bA$ $420 \pm 30aB$ $120 \pm 8abA$ $490 \pm 40aB$ $200 \pm 40bA$ $390 \pm 40bB$ $190 \pm 40cA$ $150 \pm 20bA$ $340 \pm 60bA$ $650 \pm 50cB$ 31 80 $6 \pm 1aA$ $61 \pm 3bB$ $6.2 \pm 0.2bA$ $6.3 \pm 0.1cA$ $19 \pm 2cdB$ $12.2 \pm 0.5aA$	$20 \pm 3cA$ $22.8 \pm 0.5cA$ 6338 8838 2470 4580 $210 \pm 8bcA$ $1240 \pm 90cB$ $510 \pm 10dA$ $1800 \pm 10bB$ $1080 \pm 60eA$ $1060 \pm 90dA$ ND ND $500 \pm 30bA$ $480 \pm 50bcA$ 170 110 $158 \pm 7bB$ $100 \pm 20bcA$ ND ND $12 \pm 1bA$ $10 \pm 1aA$	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA 400 ± 30bB ND ND ND 490 ± 10bA 1020 ± 40 dB 172 157 153 ± 1bB 133 ± 5cA ND ND ND 19 ± 2cdA 24 ± 3cA	29 ± 2dA 37 ± 4 dB 5472 12854 826 1080 200 ± 30bcA 390 ± 90aB 90 ± 6abA 300 ± 40aB 18 ± 1aA 20 ± 1aA 78 ± 2bB 50 ± 10abA 250 ± 50bA 320 ± 60bA 190 423 160 ± 40bA 410 ± 60 dB ND ND 30 ± 4eB 13 ± 1abA	ND ND ND 14202 182 1017 16 ± 3aA 490 ± 30aB 72 ± 4aA 370 ± 40aB 49 ± 1aB 17 ± 2aA 45 ± 5bA 140 ± 20bB ND ND ND ND 32 ± 4bB ND 32 ± 4bB ND 8.1 ± 0.1 dB ND 24 ± 3cB
092 219 355 379 400 192 570 477	methoxyeugenol ^f lipid derivatives C6 compounds hexanal (E)-2-hexenal 1-hexanol (Z)-3-hexen-1-ol (E)-2-hexen-1-ol carbonyls 2-heptanone 2-undecanone (E,E)-2,4-heptadienal	2008 2007 2008 2008	ND 17 ± 3 bcA 14 ± 2 bA $14 \pm $	$\begin{array}{c} 12.7 \pm 0.01 \text{cB} \\ 11 \pm 1 \text{bA} \\ 13 \pm 2 \text{bA} \\ \\ \hline \\ 3603 \\ 5324 \\ 2211 \\ 3958 \\ 230 \pm 20 \text{bcA} \\ 800 \pm 90 \text{bB} \\ 140 \pm 10 \text{bA} \\ 410 \pm 60 \text{cB} \\ 440 \pm 60 \text{cA} \\ 570 \pm 80 \text{cA} \\ 310 \pm 40 \text{dA} \\ 440 \pm 60 \text{cA} \\ 1070 \pm 90 \text{cA} \\ 1720 \pm 90 \text{cB} \\ \\ \hline \\ 21 \\ 18 \\ 3.0 \pm 0.001 \text{aB} \\ 1.4 \pm 0.001 \text{aA} \\ \text{ND} \\ \text{ND} \\ 17.7 \pm 0.1 \text{cA} \\ 16.5 \pm 0.01 \text{bA} \\ \end{array}$	$37 \pm 6eA$ $35 \pm 4dA$ 3628 6908 1061 2100 $180 \pm 30bA$ $420 \pm 30aB$ $120 \pm 8abA$ $490 \pm 40aB$ $200 \pm 40bA$ $390 \pm 40bB$ $190 \pm 40cA$ $150 \pm 20bA$ $340 \pm 60bA$ $650 \pm 50cB$ 31 80 $6 \pm 1aA$ $61 \pm 3bB$ $6.2 \pm 0.2bA$ $6.3 \pm 0.1cA$ $19 \pm 2cdB$ $12.2 \pm 0.5aA$	$20 \pm 3\text{cA}$ $22.8 \pm 0.5\text{cA}$ 6338 8838 2470 4580 $210 \pm 8\text{bcA}$ $1240 \pm 90\text{cB}$ $510 \pm 10\text{dA}$ $1800 \pm 10\text{bB}$ $1080 \pm 60\text{eA}$ $1060 \pm 90\text{dA}$ ND ND $500 \pm 30\text{bA}$ $480 \pm 50\text{bcA}$ 170 110 $158 \pm 7\text{bB}$ $100 \pm 20\text{bcA}$ ND ND $12 \pm 1\text{bA}$ $10 \pm 1\text{aA}$	18 ± 4bcA 14 ± 2bA 6707 6570 1312 2620 273 ± 3cA 800 ± 30bB 130 ± 20bA 400 ± 40aB 247 ± 7bA 400 ± 30bB ND ND ND 490 ± 10bA 1020 ± 40 dB 172 157 153 ± 1bB 133 ± 5cA ND ND ND 19 ± 2cdA 24 ± 3cA	29 ± 2dA 37 ± 4 dB 5472 12854 826 1080 200 ± 30bcA 390 ± 90aB 90 ± 6abA 300 ± 40aB 18 ± 1aA 20 ± 1aA 78 ± 2bB 50 ± 10abA 250 ± 50bA 320 ± 60bA 190 423 160 ± 40bA 410 ± 60 dB ND ND 30 ± 4eB 13 ± 1abA	ND ND ND 22916 14202 182 1017 16 ± 3aA 490 ± 30aB 72 ± 4aA 370 ± 40aB 49 ± 1aB 17 ± 2aA 45 ± 5bA 140 ± 20bB ND ND ND S1 ± 4bB ND 32 ± 4bB ND 8.1 ± 0.1 dB ND 24 ± 3cB

Table 4. Continued

RI	compound	year	Marion	Chehalem	Santiam	Himalaya	Olallie	Logan	red raspberry (cv. Meeker)	
1446	1-octen-3-ol	2008 2007	$610 \pm 90 \mathrm{cA} \\ 8.0 \pm 0.6 \mathrm{eB}$	$170 \pm 40 \mathrm{bA} \\ 5.6 \pm 0.6 \mathrm{dA}$	$260 \pm 40 \text{bB} \\ 4.4 \pm 0.4 \text{cA}$	$\begin{array}{c} \text{1060} \pm \text{90dA} \\ \text{7.6} \pm \text{0.1eA} \end{array}$	$1510 \pm 70 \mathrm{eA} \\ 4.8 \pm 0.4 \mathrm{cdA}$	$\begin{array}{c} \textbf{410} \pm \textbf{90bcB} \\ \textbf{3.4} \pm \textbf{0.1bA} \end{array}$	$\begin{array}{c} \text{ND} \\ \text{2.2} \pm \text{0.1aA} \end{array}$	
		2008	5 ± 1 bA	$5.6 \pm 0.2 \mathrm{bA}$	$12\pm1\mathrm{dB}$	7.3 ± 0.5 cA	$11.1\pm0.2\mathrm{dB}$	4.4 ± 0.6 abA	4.1 ± 0.1 aB	
1452	heptanol	2007	15 ± 1bB	$22 \pm 2cA$	$24 \pm 3cA$	$24 \pm 2cA$	9.2 ± 0.5 bB	$13 \pm 2bA$	2.8 ± 0.2 aA	
		2008	$10 \pm 1bA$	$24 \pm 2cA$	34 ± 2eB	$23 \pm 2 dA$	6.1 ± 0.1abA	18 ± 3cB	$4.0 \pm 0.2aB$	
1461	6-methyl-5-hepten-2-ol	2007	34 ± 5aB	$37 \pm 4aA$	110 ± 10cA	$20 \pm 2aA$	78 ± 1 bA	20 ± 3aA	$78 \pm 3bA$	
4 = 40		2008	22 ± 4aA	43 ± 5bA	94 ± 6dA	19 ± 2aA	76 ± 4cA	32 ± 6abB	191 ± 7eB	
1543	octanol	2007 2008	$41\pm 6 \mathrm{fB}$ $25\pm 4 \mathrm{aA}$	$32 \pm 2eB$ $19 \pm 1aA$	$25\pm3 ext{dA}$ $160\pm20 ext{cB}$	$157\pm1 m gB$ $89\pm5 m bA$	19 ± 3 cB 7 ± 1 aA	$\begin{array}{c} 10 \pm 1 \text{bA} \\ 15.2 \pm 0.1 \text{aB} \end{array}$	-aA 13 ± 1aB	
	acids		1424	1115	2076	2468	2840	4012	15410	
		2008	759	1040	3816	2890	1982	10610	9540	
1607	butanoic acid	2007	310 ± 3aA	240 ± 30aA	390 ± 10abA	290 ± 20aB	540 ± 30cB	440 ± 20bA	$3530 \pm 50 \mathrm{dB}$	
4055	O months that the state of the	2008	298 ± 8aA	225 ± 6aA	790 ± 10cB	237 ± 9aA	452 ± 8bA	$1560 \pm 80 \text{dB}$	1390 ± 50dA	
1655	2-methylbutanoic acid	2007	335 ± 6bcB	430 ± 20cA	216 ± 3abA	1330 ± 90dA	210 ± 6abA	172 ± 2aA	440 ± 40cA	
1056	havanaia aaid	2008	270 ± 20abA	490 ± 50abA	$226 \pm 7 ext{abA}$ $830 \pm 80 ext{abA}$	2100 ± 20cB	220 ± 20abA	200 ± 10aB	$600 \pm 40 \text{bB}$	
0001	hexanoic acid	2007 2008	$660 \pm 90 ext{abB}$ $109 \pm 9 ext{aA}$	330 ± 60 aA 260 ± 40 aA	2040 ± 90 bB	810 ± 90 abB 533 ± 3 abA	$1840 \pm 90 \text{bB} \\ 1140 \pm 30 \text{bA}$	3320 ± 90 cA 8460 ± 20 cB	$10700 \pm 900 \mathrm{dB}$ $6750 \pm 90 \mathrm{cA}$	
วกยก	octanoic acid	2006	119 ± 5aB	$115 \pm 9aB$	640 ± 20 cA	$38 \pm 3aB$	250 ± 10bB	80 ± 10aA	$740 \pm 80 dA$	
2000	ocianoic acid	2007	82 ± 3abA	$65 \pm 2abA$	$760 \pm 70 dA$	20 ± 1aA	$170 \pm 20 \text{bA}$	390 ± 70cB	1340 ± 90eB	
	esters	2007	71	10	59	2	105	45	118	
	001010	2008	305	36	169	5	152	91	15	
1043	ethyl butanoate	2007	ND	ND	ND	ND	17.7 ± 0.2bB	ND	ND	
	,	2008	ND	ND	ND	ND	$8.0 \pm 0.5 \text{bA}$	ND	ND	
1197	methyl hexanoate	2007	ND	ND	$1.8 \pm 0.3 \text{bA}$	ND	$7.8 \pm 0.4 \mathrm{cB}$	$9.4 \pm 0.6 \mathrm{cB}$	$44\pm2\mathrm{dB}$	
	,	2008	ND	ND	$1.6 \pm 0.3 \text{bA}$	ND	3.4 ± 0.2 cA	ND	$1.3 \pm 0.2 \text{bA}$	
1244	ethyl hexanoate	2007	$10\pm1 \mathrm{bB}$	$4.3 \pm 0.1 \text{abB}$	$22\pm2cA$	$2.0\pm0.1aA$	$46\pm1\mathrm{dB}$	$28\pm1 \text{cA}$	$70 \pm 5 \mathrm{eB}$	
		2008	$2.9\pm0.1\text{aA}$	1.6 ± 0.1 aA	$30\pm1 \mathrm{cB}$	$5.3 \pm 0.4 \mathrm{aB}$	$16.5\pm0.6\text{bA}$	$32 \pm 4 \text{cA}$	13 ± 1 bA	
1274	hexyl acetate	2007	$23\pm2cA$	ND	$10 \pm 1 \text{bA}$	ND	$8.6\pm0.2\text{bA}$	ND	$1.4\pm0.2 aB$	
		2008	$96\pm4\mathrm{dB}$	$5.1 \pm 0.5 \mathrm{aB}$	$30\pm1 \mathrm{cB}$	ND	$24\pm1 \mathrm{bB}$	ND	ND	
1314	(Z)-3-hexenyl acetate	2007	$4.3\pm0.9\text{dA}$	$1.3 \pm 0.1 \text{bA}$	$2.4 \pm 0.7 \text{bcA}$	ND	ND	$2.2\pm0.2\text{bA}$	$2.7\pm0.2 \mathrm{cB}$	
		2008	$49\pm2\mathrm{dB}$	$9.2\pm0.8 \mathrm{bB}$	$12.7 \pm 0.5 \mathrm{cB}$	ND	ND	$15 \pm 2cB$	1.1 ± 0.1 aA	
1330	(E)-2-hexenyl acetate	2007 2008	34 ± 1 dA 157 ± 20 dB	4.8 ± 0.6 bA 20 ± 4 bB	$23\pm2\mathrm{cA}$ $95\pm4\mathrm{cB}$	ND ND	$25.3 \pm 0.6 \text{cA}$ $100 \pm 2 \text{cB}$	5.1 ± 0.8 bA 44 ± 6 bB	ND ND	
	lactones	2007	27	10	162	60	76	113	7123	
		2008	22	10	183	55	49	170	3354	
1912	γ -octalactone	2007	$3.8 \pm 0.01 \text{abA}$	3.2 ± 0.01 aA	5.7 ± 0.1 cA	4.7 ± 0.01 bcA	$9.0\pm0.2\mathrm{dB}$	4.1 ± 0.01 abA	$51 \pm 1 \mathrm{eB}$	
		2008	3.7 ± 0.1 bA	3.0 ± 0.001 aA	$7.7 \pm 0.1 \mathrm{eB}$	$5.1 \pm 0.1 dA$	8.0 ± 0.001 eA	$4.6\pm0.001\text{cA}$	$38.0 \pm 0.4fA$	
1967	δ -octalactone	2007	4.1 ± 0.4 aA	ND	$63 \pm 2cA$	ND	1.8 ± 0.2 aA	25.3 ± 0.4 bA	$1780 \pm 30 \mathrm{dB}$	
		2008	3.9 ± 0.2 aA	ND	82 ± 3cB	ND	1.3 ± 0.2aA	72 ± 3bB	$1010 \pm 6 dA$	
1998	γ -nonalactone	2007	ND	ND	ND	ND	ND	ND	10 ± 1bA	
0000	2 manalanta	2008	ND	ND	ND	ND	ND	ND	16.5 ± 0.4 bB	
2022	δ -nonalactone	2007	3.5 ± 0.2 abB	2.9 ± 0.1 aB	4.1 ± 0.2 abA	4.4 ± 0.01 bA	4.6 ± 0.2 bB	4.4 ± 0.2 bA	29 ± 2 cA	
2021	a, docalactors	2008	2.8 ± 0.04 abA	2.3 ± 0.05 aA	3.7 ± 0.2 bA	5.6 ± 0.4 cB	3.9 ± 0.02 bA	3.5 ± 0.5 bA	26.6 ± 0.6 dA	
∠U3 I	γ -decalactone	2007	4.2 ± 0.1 bcB	1.8 ± 0.04 aA	5.8 ± 0.4 cA	$42\pm2eA$	$52 \pm 1 \text{fB}$	3.2 ± 0.1abB	$12 \pm 1 dA$	
2070	δ -decalactone	2008 2007	3.7 ± 0.1 bA 7.8 ± 0.1 bB	1.8 ± 0.1 aA 1.0 ± 0.1 aA	6.3 ± 0.1 cA 82 ± 2 cA	$38 \pm 1 \text{fA}$ $7.7 \pm 0.2 \text{bB}$	$30 \pm 2 eA$ $8.0 \pm 0.4 bB$	1.9 \pm 0.1aA 75 \pm 3cA	12.2 ± 0.4 dA 5240 ± 90 dB	
_U/J	o-uccaiacione	2007	6.8 ± 0.10 A	2.2 ± 0.1 aA	$81 \pm 4bA$	4.7 ± 0.206 $4.7 \pm 0.1aA$	4.6 ± 0.4 aA	$75 \pm 30A$ $87 \pm 4bB$	2250 ± 30 cA	
2142	δ -dodecalactone	2007	3.5 ± 0.2cB	1.3 ± 0.001 bB	1.5 ± 0.001 bA	$4.7 \pm 0.1 \text{ aA}$ $1.5 \pm 0.1 \text{ bA}$	1.0 ± 0.001 abA	0.8 ± 0.001 aA	$0.8 \pm 0.001a$	
_ 1-72	o doddodiaotono	2008	1.5 ± 0.001 bA	0.6 ± 0.001 aA	2.5 ± 0.001 dB	1.9 ± 0.1 cB	0.8 ± 0.001 abA	0.6 ± 0.001 aA	$0.8 \pm 0.001a$	
	furanones	2007	3888	230	740	4121	2767	230	710	
		2008	3593	240	810	4018	2432	240	730	
1567	mesifurane	2007	$38\pm2\text{bB}$	ND	ND	$81 \pm 1 \text{cA}$	$26.6\pm0.4\text{bB}$	ND	ND	
		2008	$22.8 \pm 0.6 \text{bA}$	ND	ND	$208 \pm 9 \mathrm{cB}$	$21.5\pm0.4\text{bA}$	ND	ND	
2060	Furaneol	2007	$3850\pm30\mathrm{dB}$	$230\pm20 \text{aA}$	$740\pm10\text{bA}$	$4040\pm20\mathrm{dB}$	$2740\pm20\text{cB}$	$230\pm2aA$	$710\pm30\text{bA}$	
		2008	$\rm 3570 \pm 3 dA$	$240\pm20 \text{aA}$	$810\pm20\text{bA}$	$3810 \pm 50 \text{dA}$	$2410 \pm 50 \text{cA}$	$240 \pm 5 \text{aA}$	$730\pm10\text{bA}$	

 $[^]a$ Letters (a-g) within rows indicate the significant difference of the compounds among the cultivars by ANOVA with a Tukey test at p = 0.05. Letters (A, B) between years indicate significant difference between years by t test. ND, not detected. RI, retention index. b The concentration was estimated by the compound of 4-terpineol in SBSE method. c The concentration was estimated by the compound isoeugenol in SPE method. e The concentration was estimated by the compound e Finonome in SBSE method. f The concentration was estimated by the compound isoeugenol in SBSE method.

for other terpene compounds. Some compounds have a low degree of heritability, and they are easily lost during the breeding process (5).

(ii) Norisoprenoids. 'Marion' contained the whole spectrum of norisoprenoids, with a middle range concentration. However, the concentration for each individual compound was low.

The cultivars from the maternal side of the pedigree including 'Chehalem', 'Santiam', and 'Himalaya' had very limited amounts of norisoprenoids, whereas the cultivars representing the paternal side including 'Olallie', 'Logan', and especially 'Meeker' had significantly higher (p < 0.001) norisoprenoid contents. The total concentration of norisoprenoids in 'Meeker' was > 10 times the amount in 'Marion'.

Norisoprenoids are important aroma-contributing compounds in 'Marion' blackberry and raspberry (13, 14). The genotypes in the paternal side of 'Marion' pedigree all had high levels of β -ionone. 'Meeker' had extremely high α -ionone and β -ionone contents. 'Logan' had much less β -ionone than 'Meeker' raspberry. Between 'Logan' and 'Olallie', about a 50% decrease was observed for β -ionone. However, the concentration of β -ionone in 'Marion' as well as in the cultivars from the maternal side of the pedigree was at similarly low level. Similarly, a 50% decrease was observed for a-ionone between 'Logan' and 'Olallie'. The level of α -ionone in 'Marion' was very similar to that in 'Chehalem' and 'Olallie'. Except for 'Santiam', the concentration of β -damascenone was similar for all genotypes in 'Marion's pedigree. β -Damascenone has a floral, rosy aroma, whereas α -ionone and β -ionone have typical raspberry notes.

- (iii) Shikimic Acid Derivatives. Two types of compounds were in this group: benzyl alcohols and volatile phenols. The sensorial contribution of shikimic acid derivatives to berry fruit is probably very small, because many of these compounds had low concentrations and high sensory thresholds. Phenylmethanol could contribute floral, rosy, aroma notes to the berry aroma. In 'Marion's pedigree, 'Marion' had a moderate level of phenylmethanol content, 'Chehalem', 'Santiam', and 'Logan' had high levels of phenylmethanol, and 'Himalaya' and 'Olallie' had low levels of phenylmethanol.
- (iv) Lipid Derivatives. Lipid derivatives were the most abundant volatile compounds in the genotypes representing 'Marion's pedigree. Thirty compounds were quantified, belonging to C6 compounds, carbonyls, alcohols, acids, esters, and lactones.

C6 compounds such as hexanal, (E)-2-hexenal, and (Z)-3hexen-1-ol contribute to a green, fresh fruit aroma. The concentration of these compounds strongly depends on fruit ripening stage. The same occurs with other carbonyl compounds. Although 'Himalaya' and 'Olallie' had no detectable level of (Z)-3-hexen-1-ol, it was reported that it was highly heritable and contributes to the aroma of fresh strawberry (6).

Five alcohol compounds were analyzed, and the major alcohol compound was 2-heptanol. 2-Heptanol is one of the very important aroma compounds in blackberries that contribute to fruity flavor. The concentration of 2-heptanol in 'Marion' was between that of its parents, 'Chehalem' and 'Olallie'.

Acids were found in all cultivars in the 'Marion' pedigree. 'Marion' had the lowest acid content, alongside its parent, 'Chehalem'. All other cultivars contained much higher acid, especially 'Meeker'. The high acid content in 'Meeker' was in agreement with a literature report (13).

Esters are important aroma compounds in fruit, responsible for the fruity impressions. Overall, the amount of esters was small in the genotypes representing 'Marion's pedigree, especially in 'Himalaya'. Only ethyl hexanoate was identified in 'Himalaya'. 'Chehalem' contained only a trace amount of esters. Esters such as ethyl hexanoate and hexyl acetate were important to 'Marion' flavor. The concentration of ethyl hexanoate in 'Marion' was between that of its parents, 'Chehalem' and 'Olallie'. However, 'Marion' had the highest level of hexyl acetate. In strawberry, ethyl hexanoate levels in the offspring often were much greater than that in either parent when the parents had very low levels, whereas for hexyl acetate, the levels of the offspring ranged around those of the parents, with some offspring having much lower and some much higher levels than the parents (5).

Lactones can contribute to fruity, peach aromas. However, the aroma contribution from lactones to 'Marion' was small and probably only served as background odor. 'Marion' only had trace amounts of lactones, similar to its parent 'Chehalem'. All other cultivars contained much higher lactones. 'Meeker' had extremely high lactone constituents, especially δ -octalactone and δ -decalactone, in agreement with a previous study (13). γ-Nonalactone was identified in only 'Meeker'. The concentration of lactones in 'Marion' was between that of its parents.

(v) Furanones. Furaneol and mesifurane were quantified in this study. All cultivars contained Furaneol; however, 'Marion', 'Himalaya', and 'Olallie' had much higher amounts of Furaneol than other cultivars. Of the three cultivars with high Furaneol concentrations, 'Himalaya' had the highest amount. Mesifurane was found only in the cultivars 'Marion', 'Himalaya', and 'Olallie'.

Furaneol has a sweet, caramel, and burnt sugar flavor, whereas mesifurane imparts sweet, cherry-like, and herbal notes. Furaneol is one of the most important compounds in 'Marion' flavor (8, 14). Interestingly, the concentration of furaneol was higher in 'Marion' than in its parents, 'Chehalem' and 'Olallie'.

Chiral Anaysis. There has been great interest in the determination of the enantiomeric composition of chiral compounds in foodstuffs (16) because different enantiomeric compounds may have different sensory thresholds and attributes (17, 18). Many aroma compounds in nature have a chiral center and can exist as enantiomeric forms. Generally, because enzymes in the plant metabolism are often stereospecific, the resulting secondary metabolites may have an enantiomer dominance. Different cultivars may have different enzyme systems and thus will affect the enantiomeric ratio of aroma compounds (11, 19). Study on the enantiomeric ratio of odor-active compounds in blackberries is very limited; only the stereodifferentiation of 2-heptanol, 6-methyl-5-hepten-2-ol, and linalool oxide has been reported (20, 21).

In this study, 11 pairs of chiral isomers were separated under experimental conditions in the cultivars representing 'Marion's pedigree (**Table 5**). Seasonal variation was observed. However, the trends for each individual enantiomeric compound in each cultivar were consistent from year to year. The genotypes in 'Marion's pedigree showed large variability for chiral isomers.

Most of the compounds demonstrated a much higher percentage of one isomer over another, particularly δ -octalactone, δ -decalactone, 6-methyl-5-hepten-2-ol, and α -ionone. δ -Octalactone and δ -decalactone had a strong enantiomeric excess of the (S)-form over the (R)-form, in > 80% for most of cultivars. δ-Decalactone provides a peachy/apricot-like olfactory impression and occurs in its (S)-form in the fruits(19). 2-Heptanol also occurred in enantiomeric excess of the (S)-form over the (R)-form for most of the cultivars, except for 'Chehalem'. 'Chehalem' had a (R)-form preference. This result contradicted a literature report that 2-heptanol occurred enantiomerically pure in unrelated blackberry species (R. laciniatus and R. glaucus) (20, 22). Linalool also existed in enantiomeric excess of the (S)-form over the (R)-form for most of cultivars. However, in 'Chehalem' and 'Himalaya' it existed in a racemic mixture. It is interesting to observe that a high (S)-linalool in 'Olallie' and a racemic (S)/(R)-linalool in 'Chehalem' resulted in an increased (S)-linalool in 'Marion'. The enantiomeric distribution of linalool in nature varies. Linalool is nearly a racemic mixture in raspberry(11) and passion fruit (17), but occurs as the almost pure (S)-isomer in orange juice (23). 2-Methylbutanoic acid was also in (S)-isomer form in excess of

Table 5. Isomeric Ratio of Some Chiral Compounds in Berries from the Genotypes Representing 'Marion' Blackberry's Pedigree

compound	year	Marion	Chehalem	Santiam	Himalaya	Olallie	Logan	Meeker
heptan-2-ol (S/R)	2007	62.0/38.0	43.6/56.4	67.1/32.9	77.0/23.0	51.6/48.4	100/0	68.3/31.7
	2008	63.2/36.8	38.5/61.5	85.0/15.0	71.4/28.6	59.4/40.6	92.1/7.9	66.4/33.6
linalool (S/R)	2007	80.2/19.8	49.8/50.2	74.7/25.3	48.9/51.1	92.4/7.6	80.7/19.3	69.3/30.7
	2008	87.2/12.8	50.5/49.5	70.5/29.5	46.9/53.1	92.9/7.1	84.6/15.4	76.5/23.5
2-methylbutanoic acid (S/R)	2007	83.5/16.5	82.8/17.2	62.0/38.0	77.9/22.1	64.9/35.1	64.1/35.9	78.0/22.0
	2008	79.2/20.8	83.8/16.2	61.4/38.6	82.5/17.5	64.8/35.2	61.1/38.9	72.8/27.2
δ -octalactone (<i>S/R</i>)	2007	82.0/18.0	-/-	95.3/4.7	-/-	92.0/8.0	89.6/10.4	96.6/3.4
	2008	89.6/10.4	-/-	95.6/4.4	-/-	83.7/16.3	92.8/7.2	94.6/5.4
δ -decalactone (<i>S</i> / <i>R</i>)	2007	94.1/5.9	100/0	99.2/0.8	88.2/11.8	92.6/7.4	98.2/1.8	92.8/7.2
	2008	85.7/14.3	100/0	99.0/1.0	90.2/9.8	91.4/8.6	98.7/1.3	99.5/0.5
6-methyl-5-hepten-2-ol (S/R)	2007	4.7/95.3	2.7/97.3	2.1/97.9	0/100	8.8/91.2	8.3/91.7	9.0/91.0
	2008	3.3/96.7	1.4/98.6	3.5/96.5	0/100	11.0/89.0	3.8/96.2	5.0/95.0
α -ionone (S/R)	2007	0/100	0/100	0/100	0/100	0/100	0/100	0.3/99.7
	2008	0/100	0/100	0/100	0/100	0/100	0/100	0.1/99.9
terpinen-4-ol (S/R)	2007	19.2/80.8	15.0/85.0	17.1/82.9	13.3/86.7	39.5/60.5	31.6/68.4	14.2/85.8
	2008	18.8/81.2	16.2/83.8	17.5/82.5	14.8/85.2	43.7/56.3	33.5/66.5	16.8/83.2
limonene (S/R)	2007	57.6/42.4	46.4/53.6	60.6/39.4	61.0/39.0	57.5/42.5	59.0/41.0	46.5/53.5
	2008	58.4/41.6	45.6/54.4	54.7/45.3	58.5/41.5	59.2/40.8	57.8/42.2	40.1/59.9
α-terpinenol (S/R)	2007	58.7/41.3	38.8/61.2	44.9/55.1	49.7/50.3	59.6/40.4	57.8/42.2	78.4/21.6
	2008	58.6/41.4	35.6/64.4	42.1/57.9	45.7/54.3	59.1/40.9	54.8/45.2	65.8/34.2
Furaneol (1)/(2) ^a	2007	47.2/52.8	47.2/52.8	47.1/52.9	48.0/52.0	47.9/52.1	50.6/49.4	47.5/52.5
	2008	47.5/52.5	46.9/53.1	47.4/52.6	48.0/52.0	46.9/53.1	49.4/50.6	46.8/53.2

^a Isomeric configuration is not identified.

the (R)-form. 2-Methylbutanoic acid is biosynthetically linked with L-isoleucin, so that the (S)-configuration in fruits is to be expected.

(R)-6-Methyl-5-hepten-2-ol was predominant in the (R)-form; α -ionone was almost pure enantiomer in all of the cultivars, which was in agreement with previous reports in blackberry (20) and raspberries (19). Terpinen-4-ol also occurred in the major isomer of (R)-form. Terpinen-4-ol has been reported predominantly in the (R)-form in Andes berry (22); however, the (S)-isomer exists in raspberry (11) and passion fruit (17). Limonene had a weak chiral isomeric preference of the (S)-form in most of the cultivars. It has been reported that the major isomer of limonene in Valencia late oranges is the (R)-form (23). However, varying tendency toward the racemization of limonene has been reported for lavender oils, depending upon the method of analysis (24). α -Terpinenol was in a racemic mixture. Naturally occurring racemates of α -terpinenol have been reported in yellow passion fruit (17).

The isomeric form of Furaneol could not be confirmed in this study because of the absence of authentic standards. It is reported that the (R)-isomer has a stronger sugary, jammy, and sweet aroma than the (S)-isomer (25). In this study, Furaneol was in a racemic form; however, the racemates of Furaneol cannot be confirmed in berry samples because the unique keto—enol tautomeric feature in the molecular structure can cause their racemization (25).

In conclusion, the volatile compounds in 'Marion's pedigree were diverse, and some trends in volatile levels among parental and offspring genotypes were observed. For most of the compounds, the concentrations of volatile compounds in progenies were intermediate to the levels of their parents. However, in some cases, such as Furaneol in 'Marion', the concentration in the progeny exceeded that in its parents. Each cultivar in 'Marion's pedigree had its unique chiral isomeric distribution.

LITERATURE CITED

- Finn, C. E.; Strik, B. C.; Lawrence, F. J. 'Marion' trailing blackberry. Fruit Var. J. 1997, 51, 130–133.
- (2) Pyysalo, T. Identification of volatile compounds in hybrids between raspberry (*Rubus idaeus*, L.) and arctic bramble (*Rubus arcticus*, L.). *Z. Lebensm. Unters. Forsch.* **1976**, *162*, 263–272.

- (3) Hirvi, T.; Honkanen, E. The volatiles of two new strawberry cultivars, 'Annelie' and 'Pioneer', obtained by backcrossing of cultivated strawberries with wild strawberries, *Fragaria vesca*, *Rügen* and *Fragaria virginiana*. Z. Lebensm. Unters. Forsch. 1982, 175, 113–116
- (4) Hirvi, T.; Honkanen, E. The aroma of some hybrids between highbush blueberry (*Vaccinium corymbosum*, L.) and bog blueberry (*Vaccinium uliginosum*, L.). Z. Lebensm. Unters. Forsch. **1983**, 176, 346–349.
- (5) Olbricht, K.; Grafe, C.; Weiss, K.; Ulrich, D. Inheritance of aroma compounds in a model population of *Fragaria* × *ananassa* Duch. *Plant Breed.* **2008**, *127*, 87–93.
- (6) Carrasco, B.; Hancock, J. F.; Beaudry, R. M.; Retamales, J. B. Chemical composition and inheritance patterns of aroma in *Fragaria* × ananassa and *Fragaria virginiana* progenies. *HortScience* 2005, 40, 1649–1650.
- (7) Kerler, J.; Jagers, P.; Bouter, N.; Weenen, H.; Bruijnje, A.; Glasius, M.; Duineveld, K.; Heij, H.; Meulenbroek, B. Strawberry derived flavor via plant breeding. In *Frontiers of Flavour Science*, Proceedings of the Weurman Flavour Research Symposium, 9th, Freising, Germany, June 22-25, 1999; Schieberle, P., Engel, K. H., Eds; Deutsche Forschung. Lebensmittel: Garching, Germany, 2000; pp 370-374.
- (8) Du, X.; Qian, M. C. Quantification of 2,5-dimethyl-4-hydroxy-3(2H)-furanone using solid-phase extraction and direct microvial insert thermal desorption gas chromatography-mass spectrometry. *J. Chromatogr.*, A 2008, 1208, 197–201.
- (9) Perkins-Veazie, P.; Clark, J. R.; Huber, D. J.; Baldwin, E. A. Ripening physiology in 'Navaho' thornless blackberries: color, respiration, ethylene production, softening, and compositional changes. J. Am. Soc. Hortic. Sci. 2000, 125, 357–363.
- (10) Moore, P. P.; Burrows, C.; Fellman, J.; Mattinson, D. S. Genotype × environment variation in raspberry fruit aroma volatiles. *Acta Hortic.* **2002**, *585*, 511–516.
- (11) Malowicki, S. M. A.; Martin, R.; Qian, M. C. Volatile composition in raspberry cultivars grown in the Pacific Northwest determined by stir bar sorptive extraction—gas chromatography—mass spectrometry. J. Agric. Food Chem. 2008, 56, 4128–4133.
- (12) Qian, M.; Wang, Y. Seasonal variation of volatile composition and odor activity value of 'Marion' (*Rubus* spp. *hyb.*) and 'Thornless Evergreen' (*R. laciniatus* L.) blackberries. *J. Food Sci.* 2004, 70, C13–C20.
- (13) Klesk, K.; Qian, M.; Martin, R. R. Aroma extract dilution analysis of cv. Meeker (*Rubus idaeus* L.) red raspberries from Oregon and Washington. J. Agric. Food Chem. 2004, 52, 5155–5161.

- (14) Klesk, K.; Qian, M. Aroma extract dilution analysis of cv. Marion (*Rubus* spp. hyb) and cv. Evergreen (*R. laciniatus* L.) blackberries. *J. Agric. Food Chem.* 2003, 51, 3436–3441.
- (15) Du, X.; Finn, C. E.; Qian, M. C. Volatile composition and odouractivity value of thornless 'Black Diamond'and 'Marion'blackberries. Food Chem. 2010, 119, 1127–1134.
- (16) Armstrong, D. W.; Chang, C.-D.; Li, W. Y. Relevance of enantiomeric separations in food and beverage analyses. *J. Agric. Food Chem.* 1990, 38, 1674–1677.
- (17) Werkhoff, P.; Guntert, M.; Krammer, G.; Sommer, H.; Kaulen, J. Vacuum headspace method in aroma research: flavor chemistry of yellow passion fruits. J. Agric. Food Chem. 1998, 46, 1076– 1093.
- (18) Minh Tu, N. T.; Onishi, Y.; Choi, H.-S.; Kondo, Y. Characteristic odor components of *Citrus sphaerocarpa* Tanaka (Kabosu) coldpressed peel oil. *J. Agric. Food Chem.* 2002, 50, 2908–2913.
- (19) Casabianca, H.; Graff, J. B. Enantiomeric and isotopic analysis of flavor compounds of some raspberry cultivars. J. Chromatogr., A 1994, 684, 360–5.
- (20) Humpf, H. U.; Schreier, P. Bound aroma compounds from the fruit and the leaves of blackberry (*Rubus laciniata L.*). *J. Agric. Food Chem.* **1991**, *39*, 1830–1832.

- (21) Greule, M.; Mosandl, A. Heptan-2-ol and *trans*-linalool oxide (fur.) as inherent indicators of natural blackberry flavors using enantioselective and multielement-MDGC-IRMS analysis. *Eur. Food Res. Technol.* **2008**, *226*, 1001–1006.
- (22) Morales, A. L.; Albarracin, D.; Rodriguez, J.; Duque, C. Volatile constituents from Andes berry (*Rubus glaucus* Benth). *J. High Resolut. Chromatogr.* 1996, 19, 585–587.
- (23) Hinterholzer, A.; Schieberle, P. Identification of the most odouractive volatiles in fresh, hand-extracted juice of Valencia late oranges by odour dilution techniques. *Flavour Fragrance J.* 1998, 13, 49–55.
- (24) Weinreich, B.; Nitz, S. Influences of processing on the enantiomeric distribution of chiral flavour compounds. Part A. linalyl acetate and terpene alcohols. *Chem. Mikrobiol. Technol. Lebensm.* **1992**, *14*, 117–124
- (25) Yaguchi, Y.; Nakahashi, A.; Miura, N.; Sugimoto, D.; Monde, K.; Emura, M. Stereochemical study of chiral tautomeric flavorous furanones by vibrational circular dichroism. *Org. Lett.* 2008, 10, 4883–4885

Received for review September 29, 2009. Revised manuscript received December 16, 2009. Accepted December 19, 2009.